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Insertion-and-deletion-derived tumour-specific neoantigens 
and the immunogenic phenotype: a pan-cancer analysis
Samra Turajlic*, Kevin Litchfield*, Hang Xu, Rachel Rosenthal, Nicholas McGranahan, James L Reading, Yien Ning S Wong, Andrew Rowan, 
Nnennaya Kanu, Maise Al Bakir, Tim Chambers, Roberto Salgado, Peter Savas, Sherene Loi, Nicolai J Birkbak, Laurent Sansregret, Martin Gore, 
James Larkin, Sergio A Quezada, Charles Swanton

Summary 
Background The focus of tumour-specific antigen analyses has been on single nucleotide variants (SNVs), with the 
contribution of small insertions and deletions (indels) less well characterised. We investigated whether the frameshift 
nature of indel mutations, which create novel open reading frames and a large quantity of mutagenic peptides highly 
distinct from self, might contribute to the immunogenic phenotype.

Methods We analysed whole-exome sequencing data from 5777 solid tumours, spanning 19 cancer types from The 
Cancer Genome Atlas. We compared the proportion and number of indels across the cohort, with a subset of results 
replicated in two independent datasets. We assessed in-silico tumour-specific neoantigen predictions by mutation 
type with pan-cancer analysis, together with RNAseq profiling in renal clear cell carcinoma cases (n=392), to compare 
immune gene expression across patient subgroups. Associations between indel burden and treatment response were 
assessed across four checkpoint inhibitor datasets.

Findings We observed renal cell carcinomas to have the highest proportion (0·12) and number of indel mutations 
across the pan-cancer cohort (p<2·2 × 10–¹⁶), more than double the median proportion of indel mutations in all other 
cancer types examined. Analysis of tumour-specific neoantigens showed that enrichment of indel mutations for high-
affinity binders was three times that of non-synonymous SNV mutations. Furthermore, neoantigens derived from 
indel mutations were nine times enriched for mutant specific binding, as compared with non-synonymous SNV 
derived neoantigens. Immune gene expression analysis in the renal clear cell carcinoma cohort showed that the 
presence of mutant-specific neoantigens was associated with upregulation of antigen presentation genes, which 
correlated (r=0·78) with T-cell activation as measured by CD8-positive expression. Finally, analysis of checkpoint 
inhibitor response data revealed frameshift indel count to be significantly associated with checkpoint inhibitor 
response across three separate melanoma cohorts (p=4·7 × 10–⁴).

Interpretation Renal cell carcinomas have the highest pan-cancer proportion and number of indel mutations. 
Evidence suggests indels are a highly immunogenic mutational class, which can trigger an increased abundance of 
neoantigens and greater mutant-binding specificity.
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Introduction
Tumour mutations are a key substrate for the generation 
of anticancer immunity.1 Large-scale sequencing studies2 
have led to the systematic annotation of mutational 
processes and somatic alterations across a broad range of 
human cancer types. The cumulative insight from these 
studies has advanced our understanding of oncogenesis 
at both a basic and translational level. The data have also 
been scrutinised for mutations that might play a role in 
the recognition of cancer cells by the immune system. 
The focus of these analyses to a large extent is on the 
single nucleotide variants (SNVs), on account of the 
relative simplicity and reliability of calling sequence 
changes of one base pair (bp) fixed length. As a 

consequence, the effect of small scale insertion and 
deletion mutations (indels) on antitumour immunity has 
been poorly characterised despite the clear link of such 
mutations to oncogenesis3 and their potential to generate 
highly immunogenic peptides.

The success of checkpoint inhibitor therapies 
underlines the notion that tumour-specific T-cell 
responses pre-exist in some patients and are kept under 
tight control via immune modulatory mechanisms. To 
date, checkpoint inhibitors have been approved for the 
treatment of six solid tumour types: melanoma (anti-
PD-1/CTLA-4), merkel cell carcinoma (anti-PDL-1), renal 
clear cell carcinoma (anti-PD-1), non-small cell lung 
cancer (lung adenocarcinoma and lung squamous cell 
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carcinoma; anti-PD-1), carcinoma of the bladder (anti-
PD-L1), and head and neck squamous cell carcinoma 
(anti-PD-1), as well as microsatellite instability high 
(MSI-H) tumours of any tissue subtype. T cells reactive 
to tumour-specific mutant antigens (neoantigens) have 
been detected across the common epithelial 
malignancies4 and neoantigens are increasingly shown 
to be the target of checkpoint inhibitor-induced T-cell 
responses5,6 and adoptively transferred T cells.7–9 Many 
investigators are leveraging whole-exome sequencing 
and RNA sequencing, focusing on non-synonymous 
SNVs (nsSNVs), to predict expressed mutated peptides 
that bind MHC class I molecules (SNV-neoantigens). 
Neoantigen burden is closely related to the nsSNV 
burden, which varies significantly across cancer types, 
from one nsSNV in paediatric tumours to more than 
1500 nsSNVs in tumours associated with microsatellite 
instability.10 However, less than 1% of the nsSNVs in 
expressed genes lead to detectable CD4-positive11 or 
CD8-positive T-cell7 reactivities in tumour-infiltrating 
lymphocytes. Accordingly, efficacy of checkpoint 
inhibitors is most marked in tumour types with a high 
nsSNV burden, including melanoma, lung 
adenocarcinoma, lung squamous cell carcinoma, head 
and neck squamous cell carcinoma, and carcinoma of 
the bladder,10 which reflects a higher probability of 
creating a neoantigen that will be presented to and 
recognised by T cells. Furthermore, within these tumour 
types, nsSNV and neoantigen burdens correlate with 
response to checkpoint inhibitors.12–16 A notable outlier is 
renal clear cell  carcinoma, which has a relatively low 
nsSNV burden (around ten times lower than melanoma). 

Renal clear cell carcinoma is characterised by a high 
level of tumour-infiltrating immune cells17 and has been 
shown to respond to interferon-α, high-dose 
interleukin 2,18,19 and, more recently, checkpoint 
inhibitors,20,21 but the mutational and antigenic 
determinants of these responses are unknown.

Indel mutations that cause a frameshift (frameshift 
indels) create a novel open reading frame and could 
produce a large quantity of neoantigenic peptides highly 
distinct from self (appendix p 5). It has been 
hypothesised22 that novel open reading frames might be 
an ideal source of tumour-derived neoantigens and so 
induce multiple neoantigen reactive T cells, because of 
both an increased number of mutant peptides and 
reduced susceptibility to self-tolerance mechanisms. On 
this basis, we aimed to characterise the pattern of indel 
mutations with pan-cancer analysis and investigate their 
association with antitumour immune response and 
outcome following checkpoint blockade.

Methods
Study design and participants
Pan-cancer somatic mutational data were obtained from 
The Cancer Genome Atlas (TCGA) for whole-exome 
sequencing data of 5777 solid tumours, across 19 cancer 
types: bladder urothelial carcinoma, invasive breast 
carcinoma, cervical and endocervical cancers, colorectal 
adenocarcinoma, glioma, head and neck squamous cell 
carcinoma, chromophobe renal cell carcinoma, renal 
clear cell carcinoma, renal papillary cell carcinoma, liver 
hepatocellular carcinoma, lung adenocarcinoma, lung 
squamous cell carcinoma, ovarian serous cystadeno

See Online for appendix

Research in context 

Evidence before this study
We searched for available evidence in PubMed, which revealed 
multiple publications documenting overall mutation rates and 
signatures by cancer type. The predominant focus of existing 
literature was on single nucleotide variation (SNV) mutations, 
with no previous study done of insertion and deletion (indel) 
mutations on a pan-cancer basis. Regarding the association 
between somatic mutations and upregulation of antitumour 
immunity via checkpoint inhibition, several previous studies 
reported a link between high SNV load and improved response 
to checkpoint inhibition. Prevailing evidence suggests the 
mechanism of this association is linked to tumour-specific 
neoantigen reactive T cells. No previous pan-cancer study has 
investigated the difference between SNV and indel-derived 
neoantigens, despite the propensity of indels to generate 
highly mutagenic peptides via creation of a shifted novel open 
reading frame.

Added value of this study
We did a pan-cancer assessment of indel load across 
5777 tumour samples spanning 19 cancer types. Kidney 

tumours were observed to have the highest proportion and 
absolute count of indel mutations on a pan-cancer basis, a 
result which was replicated in two further independent 
datasets. Compared with SNV mutations, indel mutations 
were observed to generate three times more high-binding-
affinity neoantigens, and nine times more mutant-specific 
binders. Finally, we assessed the association between indel 
load and checkpoint inhibitor response in three melanoma 
cohorts, which showed indel load to be more strongly 
associated with response than non-synonymous (ns) SNV 
load.

Implications of all the available evidence
Our data highlight the importance of frameshift neoantigens 
alongside nsSNV neoantigens as determinants of 
immunotherapy efficacy and potentially crucial targets for 
vaccine and cell therapy interventions. Our observations in 
kidney cancer might reconcile the observed immunogenicity of 
this tumour type despite its low overall mutational burden.

For more on The Cancer 
Genome Research Network see 

http://cancergenome.nih.gov/

http://cancergenome.nih.gov/
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carcinoma, pancreatic adenocarcinoma, prostate adeno
carcinoma, skin cutaneous melanoma, stomach 
adenocarcinoma, thyroid carcinoma, and uterine 
carcinosarcoma. We extracted patient-level mutation 
annotation files from the Broad Institute TCGA GDAC 
Firehose repository, which had been previously curated 
by TCGA analysis working group experts to ensure strict 
quality control. We performed replication analyses in 
two additional cohorts of patients with renal clear cell 
carcinoma: a whole-exome sequencing study of 
106 patients with renal clear cell carcinomas reported by 
Sato and colleagues23 and a whole-exome sequencing 
study of ten patients with renal clear cell carcinomas 
reported by Gerlinger and colleagues.24 We obtained final 
post-quality control patient-level mutation annotation 
files for each study.

To further test for an association between nsSNVs or 
indel loads and patient response to checkpoint inhibitor 
therapy we used four patient cohorts. The first dataset 
consisted of 38 patients with melanoma treated with 
anti-PD-1 therapy, as reported by Hugo and colleagues.25 
We obtained final post-quality control mutation 
annotation files and clinical outcome data, and 
34 patients were retained for analysis after exclusion of 
cases in which DNA had been extracted from patient-
derived cell lines and patients in whom tissue tumor 
purity was below 20%. Four samples from Hugo and 
colleagues25 were taken after a short period on treatment, 
which raises the possibility that checkpoint inhibitor 
therapy itself might have affected mutational frequencies 
through possible elimination of immunogenic tumour 
clones. To be consistent with the original study, these 
samples were not excluded; however, we note the 
frameshift indel association presented becomes more 
significant with these cases removed. The second 
checkpoint inhibitor cohort comprised of 62 patients 
with melanoma treated with anti-CTLA-4 therapy, as 
reported by Snyder and colleagues.13 All patients’ 
samples were taken from fresh snap frozen tumour 
tissue with tumour purity of more than 20% so, 
accordingly, all 62 cases were retained for analysis. The 
Snyder and colleagues’ cohort also contained a number 
of samples taken on treatment; these samples have been 
retained for consistency; however, we note again the 
significance of results strengthens if they are removed. 
The third checkpoint inhibitor cohort comprised of 
100 patients with melanoma treated with anti-CTLA-4 
therapy, as reported by Van Allen and colleagues;12 one 
patient (Pat21) was excluded because of a tumour purity 
of less than 20%. The final checkpoint inhibitor cohort 
comprised of 31 patients with non-small-cell lung cancer 
treated with anti-PD-1 therapy, as reported by Rizvi and 
colleagues;14 all patients were eligible for inclusion. For 
these four cohorts,12–14 final mutation annotation files, 
including indel mutations, were not available, so we 
obtained raw BAM files and undertook variant calling 
using a standardised bioinformatics pipeline. To assess 

for a general association between nsSNVs or indel loads 
and patient overall survival we used a final cohort of 
100 patients with non-small-cell lung cancer, as reported 
by Jamal-Hanjani and colleagues.26 We obtained final 
post-quality control mutation annotation files and 
clinical outcome data, and 88 patients were retained for 
analysis after exclusion of non-smokers. Non-smokers 
were excluded on account of differing cause of disease 
and dramatic differences in mutation counts, which 
were likely to confound analyses. We additionally 
considered clonal versus subclonal analysis of indel 
counts in this cohort; however, because of small indel 
numbers it was not possible to reliably subset the data in 
this manner.

Procedures
For whole-exome sequencing variant calling, we obtained 
BAM files representing both the germline and tumour 
samples from the cohorts of Snyder and colleagues,13 
Van Allen and colleagues,12 and Rizvi and colleagues14 
and converted these to FASTQ format using Picard tools 
(version 1.107) SamToFastq. Raw paired-end reads 
(100 bp) in FastQ format were aligned to the full 
hg19 genomic assembly (including unknown contigs) 
obtained from GATK bundle (version 2.8),27 using bwa 
mem (bwa-0.7.7).28 We used Picard tools to clean, sort, 
and merge files from the same patient sample and to 
remove duplicate reads. We used Picard tools, GATK 
(version 2.8.1), and FastQC (version 0.10.1) to produce 
quality control metrics. SAMtools mpileup 
(version 0.1.19)29 was used to locate non-reference 
positions in tumour and germline samples. Bases with a 
Phred score of less than 20 or reads with a mapping 
quality less than 20 were omitted. Base-alignment quality 
computation was disabled and the coefficient for 
downgrading mapping quality was set to 50. VarScan2 
somatic (version 2.3.6)30 used output from SAMtools 
mpileup to identify somatic variants between tumour 
and matched germline samples. Default parameters 
were used with the exception of minimum coverage for 
the germline sample, which was set to 10, and minimum 
variant frequency was changed to 0·01. VarScan2 
processSomatic was used to extract the somatic variants. 
The resulting SNV calls were filtered for false positives 
with the associated fpfilter.pl script in Varscan2, initially 
with default settings then repeated with min-var-
frac=0·02, having first run the data through bam-
readcount (version 0.5.1). Only indel calls classed as high 
confidence by VarScan2 processSomatic were kept for 
further analysis, with somatic_p_value scores less than 
5 × 10–⁴. MuTect (version 1.1.4)31 was also used to detect 
SNVs, with annotation files contained in GATK bundle. 
Following completion, variants called by MuTect were 
filtered according to the filter parameter PASS.

In the pan-cancer cohort, SNV and indel mutation 
counts were computed per case, considering all variant 
types. Across all 5777 samples, we observed a total of 

For more on the Broad Institute 
TCGA GDAC Firehose repository 
see https://gdac.broadinstitute.
org/

For more on Picard tools see 
http://broadinstitute.github.io/
picard

For more on FastQC see 
http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/

For more on bam-readcount see 
https://github.com/genome/
bam-readcount

https://gdac.broadinstitute.org/
https://gdac.broadinstitute.org/
http://broadinstitute.github.io/picard
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/genome/bam-readcount
https://github.com/genome/bam-readcount
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1 227 075 SNVs and 54 207 indels. Dinucleotide and 
trinucleotide substitutions were not considered. The 
metric indel burden was simply defined as the absolute 
indel count per case and indel proportion was defined as 
follows

We repeated the same analysis in the two renal clear 
cell carcinoma replication cohorts.

We estimated non-sense-mediated decay (NMD) 
efficiency with RNAseq expression data (as measured in 
transcripts per kilobase million), obtained from the 
TCGA GDAC Firehose repository. We estimated the 
extent of NMD for all indel and SNV mutations (with 
SNV mutations used as a benchmark comparator) by 
comparing mRNA expression in samples with a mutation 
to the median mRNA expression of the same transcript 
across all other tumour samples in which the mutation 
was absent. Specifically, mRNA expression of every 
mutation-bearing transcript was divided by the median 
mRNA expression of that transcript in non-mutated 
samples, to give an NMD index. The overall NMD index 
values observed were 0·93 (indels) and 1·00 (SNVs), 
suggesting an overall 7% reduction in expression in indel 
mutated transcripts. Tumour purity in the renal clear cell 
carcinoma cohort was 0·54,32 quantified by histological 
assessment, and assuming constant expression in the 
remaining 0·46 normal cellular content, that would yield 
an adjusted 14% drop in expression in indel-mutation-
bearing cancer cells. If we assume that tumour mutations 
are clonal, of heterozygote genotype, in a diploid genomic 
region, and wild-type allele expression in mutated cancer 
cells remains constant, a purity-adjusted reduction of 0·5 
would be expected under a model of fully effective NMD. 
Hence these data suggest NMD operates with reduced 
efficiency in the renal clear cell carcinoma cohort; 
however, we acknowledge that these assumptions will 
have some effect. These data are presented as a global 
approximation of NMD efficiency, using methods in line 
with previous publications.33 NMD index values were 
−log₂ transformed, with 0 indicating no mRNA 
degradation and plotted for indel or SNV mutations.

We used PyClone34 and ASCAT35 to determine the 
clonal status of variants in the cohorts by Snyder and 
colleagues13 and Van Allen and colleagues.12 For each 
case variant calls were integrated with local allele-specific 
copy number (obtained from ASCAT), tumour purity 
(also obtained from ASCAT), and variant allele frequency. 
All mutations were then clustered using the PyClone 
Dirichlet process clustering. We ran PyClone with 
10 000 iterations and a burn-in of 1000, and default 
parameters. For a number of tumours the reliable copy 
number, mutation, and purity estimations could not be 
extracted, rendering clonal architecture analysis 

intractable and these tumours were omitted from the 
analysis. The following sample was excluded because of 
an absence of accurate copy number or clonality 
estimation in Snyder and colleagues’ cohort13: 
V_MSK052. For Van Allen and colleagues’ cohort,12 
reliable analysis of indel mutation clonality was not 
possible because of a lack of accurate copy number or 
clonality estimation in a number of cases: Pat02, Pat06, 
Pat100, Pat101, Pat103, Pat106, Pat110, Pat113, Pat131, 
Pat132, Pat135, Pat138, Pat139, Pat140, Pat148, Pat159, 
Pat160, Pat163, Pat165, Pat166, Pat170, Pat171, Pat174, 
Pat175, Pat24, Pat36, Pat38, Pat73, Pat77, Pat78, Pat79, 
and Pat92.

For a subset of patients (n=4592) from the TCGA 
cohort, tumour-specific neoantigen binding affinity 
prediction data were also available and obtained from 
Rooney and colleagues.36 Briefly, the four digit HLA type 
for each sample, along with mutations in class I HLA 
genes, were determined using POLYSOLVER 
(POLYmorphic loci reSOLVER).37 We determined somatic 
mutations using Mutect31 and Strelka38 tools. All 
possible 9-mer and 10-mer mutant peptides were 
computed, on the basis of the detected somatic SNV and 
indel mutation across the cohort. Binding affinities of 
mutant and corresponding wild-type peptides, relevant to 
the corresponding POLYSOLVER-inferred HLA alleles, 
were predicted using NetMHCpan (version 2.4).39 High-
affinity binders were defined as IC50 less than 50 nM. 
Wild-type allele non-strong binding was defined as IC50 
greater than 50 nM. Accordingly a mutant-specific binder 
was used to refer to a neoantigen with mutant IC50 less 
than 50 nM and wild-type IC50 more than 50 nM. A strong 
binding threshold was used for wild-type alleles to ensure 
fair comparison between SNV-derived and indel-derived 
neoantigens, in view of the high incidence of wild-type 
non-binders for indels. We excluded (from the pan-
cancer neoantigen analyses) cancers that were associated 
with a high level of viral genome integration, including 
cervical (>80% rate of human papillomavirus integration) 
and hepatocellular carcinoma (>50% rate of hepatitis B 
integration), but not head and neck squamous cell 
carcinoma (<15% rate of human papillomavirus 
integration). No TCGA dataset was available for Merkel 
cell carcinoma.

Immune gene signature data were obtained from 
Rooney and colleagues,40 with gene sets defined as stated 
in the appendix (p 3). We did analysis for TCGA patients 
with renal clear cell carcinoma (n=392), for whom both 
RNAseq and neoantigen data were available. A high 
burden of frameshift indel high-affinity neoantigens was 
defined as more than 10 per case (n=32), and the 
percentage difference in expression was compared 
between the high indel neoantigen group and all other 
patients across each immune signature. We excluded 
immune signatures with minimal ssGSEA enrichment 
scores (<0·5) in all groups. The same analysis was 
repeated for a high burden of SNV-derived high-affinity 

(number of indels + number of 
 SNVs)

indel proportion = number of indels   



Articles

www.thelancet.com/oncology   Published online July 7, 2017   http://dx.doi.org/10.1016/S1470-2045(17)30516-8	 5

neoantigens, with a threshold of more than 17 SNV 
neoantigens selected to size match the high burden 
groups (equal number of patients; n=32 across all high-
load groups) across mutational types. We plotted the 
percentage differences in expression in heatmap format. 
We did correlation analysis within the high-frameshift 
indel neoantigen group (n=32 patients with renal clear 
cell carcinoma).

Outcomes
Across the four cohorts of patients treated with 
checkpoint inhibitors, we tested nsSNV, all-coding indel, 
and frameshift indel variant counts for an association 
with patient response to therapy. For each of these 
measures, high groups were defined as the top quartile 
and low groups were defined as the bottom-three 
quartiles. We used the same criteria across all four 
datasets and compared the proportion of patients 
responding to therapy in high and low groups. Measures 
of patient response were based on definitions consistent 
with how they were evaluated in the said trials, as follows. 
For Snyder and colleagues’ cohort,13 long-term clinical 
benefit was defined as radiographic evidence of freedom 
from disease, evidence of a stable disease, or decreased 
volume of disease for more than 6 months. No long-term 
clinical benefit was defined as tumour growth on every 
CT scan after the initiation of treatment (no benefit) or a 
clinical benefit lasting 6 months or less (minimal 
benefit). For Hugo and colleagues’ cohort,25 responding 
tumours were complete response, partial response, and 
stable disease, and non-responding tumours were 
defined as disease progression. For Van Allen and 
colleagues’ cohort,12 clinical benefit was defined as 
complete response, partial response, or stable disease, 
and no clinical benefit was progressive disease or stable 
disease with overall survival less than 1 year. For Rizvi 
and colleagues’ cohort,14 durable clinical benefit was 
defined as partial response or stable disease lasting 
longer than 6 months, and no durable benefit was 
progressive disease less than 6 months from beginning 
of therapy. 

Statistical analysis
Survival analysis was done using the Kaplan-Meier 
method, with p value determined by a log-rank test. 
Relapse-free survival was defined as the time to 
recurrence or relapse, or if a patient had died without 
recurrence, the time to death. Hazard ratio (HR) was 
determined through a Cox proportional hazards model. 
Multivariate Cox regression was done with relapse-free 
survival versus indel load with stage, adjuvant therapy 
(yes or no), age, and histology included in the model.

We compared indel burden and proportion measures 
between renal cell carcinomas and all other non-kidney 
cancers with a two-sided Mann-Whitney U test. In the 
checkpoint inhibitor response analysis, nsSNV, exonic 
indel, and frameshift indel counts were each compared 

to patient response outcome using a two-sided Mann-
Whitney U test. We did a meta-analysis of results across 
the four checkpoint inhibitor datasets using the Fisher’s 
method of combining p values from independent tests. 
We undertook immune signature correlation analysis 
using a Spearman’s rank correlation coefficient. We 
carried out statistical analyses using R (version 3.0.2) and 
considered a p value of 0·05 or less (two-sided) as being 
statistically significant.

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. The corresponding author had full 
access to all the data in the study and had final 
responsibility for the decision to submit for publication.

Results
We observed a median indel proportion value of 0·05 
and a median indel count of 4, cohort-wide. Across all 
tumour types, renal clear cell carcinoma was found to 
have the highest proportion of coding indels, 0·12 
(p<2·2 × 10–¹⁶; figure 1), a 2·4 times increase when 
compared with the pan-cancer average. This result was 
replicated in two further independent cohorts, with 
median observed indel proportions of 0·10 in Sato and 
colleagues’ study23 and 0·12 in Gerlinger and colleagues’ 
study24 (figure 1). Renal papillary cell carcinoma and 
chromophobe renal cell carcinoma had the second and 
third highest indel proportion, suggesting a possible 
tissue-specific mutational process contributing to the 
acquisition of indels in renal cancers. Renal papillary cell 
carcinoma (median indel number of 10 [95% CI 9–11]) 
and chromophobe renal cell carcinoma (8 [7–10]) had the 
highest absolute indel count across all tumour types, 
closely followed by renal clear cell carcinoma (7 [6–8]). 
Renal clear cell carcinoma is characterised by loss-of-
function mutations in one or more tumour-suppressor 
genes: VHL, PBRM1, SETD2, BAP1, and KDM5C,32 
which can be inactivated by nsSNV or indel mutations. 
To exclude the possibility that these hallmark mutations 
were distorting the results, we recalculated renal clear 
cell carcinoma indel proportion excluding these genes; 
the revised indel proportion remained at 0·12. When we 
used previously published multiregion whole-exome 
sequencing data24 from ten cases of renal clear cell 
carcinoma to assess the clonal nature of indel mutations, 
53 (48%) of 110 frameshifting indels were clonal in nature 
(present in all tumour regions).

The overall effect of NMD on the expression of indel-
mutated genes was estimated to be 14% (7% drop divided 
by 0·54 tumour purity), suggesting it operates on a 
subset of transcripts (appendix p 6).

Next we sought to investigate the potential immuno
genicity of nsSNV and indel mutations through analysis 
of MHC class I-associated tumour-specific neoantigen 
binding predictions in the pan-cancer TCGA cohort. 
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Across all samples, HLA-specific neoantigen predictions 
were done on 335 594 nsSNV mutations, resulting in a 
total of 214 882 high-affinity binders (defined as epitopes 

with predicted IC50 <50 nM; the concentration necessary 
to reduce the binding affinity by half), equating to a rate 
of 0·64 neoantigens per nsSNV mutation (SNV-
neoantigens; table). In a similar manner,  predictions 
were made on 19 849 frameshift indel mutations, 
resulting in 39 768 high-affinity binders with a rate of 
2·00 neoantigens per frameshift mutation (frameshift 
neoantigens; table). Thus on a per mutation basis, 
frameshift indels could generate around three times 
more high-affinity neoantigen binders than nsSNVs 
(table), consistent with the prediction in a recent analysis 
of a colorectal cancer cohort.41 When both wild-type and 
mutant peptides are predicted to bind, central immune 
tolerance mechanisms might delete cells with the 
reactive T-cell receptor.42 Therefore, we repeated a pan-
cancer analysis restricting the neoantigens to mutant-
specific binders (ie, where the wild-type peptide is not 
predicted to be a strong binder), and showed that 
frameshift indels were nine times enriched for mutant-
allele-only binders (table).

Of particular interest were genes that are frequently 
altered via frameshift mutations and with high propensity 
for MHC binding. In a pan-cancer analysis, these genes 
were enriched for classic tumour-suppressor genes, 
including TP53, ARID1A, PTEN, KMT2D, KMT2C, APC, 
and VHL (figure 2). Collectively, the top 15 genes with the 
highest number of frameshift mutations were mutated 
in more than 500 samples (approximately 10% of the 
cohort with 5777 samples) with more than 2400 high-
affinity neoantigens predicted. Tumour-suppressor genes 
have been a previously intractable mutational target, but 
they might be targetable as potent neoantigens. 
Furthermore, by virtue of being founder events, many 
alterations in tumour-suppressor genes are clonal, 
present in all cancer cells, rendering them compelling 
targets for immunotherapy.43

We next considered the clinical effect of indel mutations 
by assessing the association between neoantigen 
enrichment and therapeutic benefit. Consistent with a 
potential role of frameshifts in the generation of 
neoantigens, those tumour types approved for the use of 
checkpoint inhibitors were all found to harbour an above 
average number of frameshift neoantigens, despite 
substantial differences in the total SNV or indel 
mutational burden—eg, renal cell carcinoma (figure 3). 
Overall, the number of frameshift neoantigens were 
significantly higher in the checkpoint inhibitor-approved 
tumour types versus those that have not been approved 
to date (p<2·2 × 10–¹⁶). However, the potential presence of 
frameshift neoantigens alone does not imply that they 
induce T-cell responses, and hence we tested their effect 
on checkpoint inhibitor efficacy. We used the exome 
sequencing results from an anti-PD-1 study25 in 
melanoma (n=38 patients). We tested three classes of 
mutation, nsSNVs, in-frame indels, and frameshift 
indels, for an association with response to treatment. 
Although nsSNVs (p=0·27) and in-frame (3n) indels 

Mutations (n) Neoantigens 
(n)*

Mutant-specific 
neoantigens (n)†

Neoantigens 
per mutation

Mutant-specific 
neoantigens per 
mutation

nsSNVs 335 594 214 882 75 224 0·64 0·22

fs-indels 19 849 39 768 39 608 2·00 2·00

Enrichment ·· ·· ·· 3·13 8·94

nsSNVs=non-synonymous single nucleotide variants. fs-indels=frameshift insertions and deletions. *Strong binders 
(<50 nM affinity). †Wild-type allele non-strong binding (>50 nM affinity).

Table: Neoantigens per variant class

Figure 1: Occurrence of indels in different types of solid tumour 
Proportion (A) and absolute count (B) of indel mutations across 19 solid tumour types from TCGA. The last two 
boxplots are additional independent renal clear cell carcinoma replication datasets from Sato and colleagues23 
and Gerlinger and colleagues.24 Statistical comparison is renal clear cell carcinoma cohort compared with all other 
non-kidney TCGA samples. indel=insertions and deletions. TCGA=The Cancer Genome Atlas. LUSC=lung 
squamous cell carcinoma. SKCM=skin cutaneous melanoma. PAAD=pancreatic adenocarcinoma. 
COADREAD=colorectal adenocarcinoma. BLCA=bladder urothelial carcinoma. THCA=thyroid carcinoma. 
CESC=cervical and endocervical cancers. OV=ovarian serous cystadenocarcinoma. LUAD=lung adenocarcinoma. 
LIHC=liver hepatocellular carcinoma. HNSC=head and neck squamous cell carcinoma. GMBLGG=glioblastoma 
multiforme and low-grade glioma. PRAD=prostate adenocarcinoma. STAD=stomach adenocarcinoma. 
UCS=uterine carcinosarcoma. BRCA=invasive breast carcinoma. KICH=chromophobe renal cell carcinoma. 
KIRP=renal papillary cell carcinoma. KIRC=renal clear cell carcinoma. 
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(p=0·19) had no association with response to treatment, 
frameshift indel mutations were significantly associated 
with anti-PD-1 response (p=0·023; figure 4A). The upper 
quartile of patients with the highest burden of frameshift 
indels had an 88% (seven of eight cases) response to anti-
PD-1 therapy, compared with 43% (11 of 26 cases) for the 
lower three quartiles (odds ratio 9·5 [95% CI 1·02–89·23]; 
figure 4B). To confirm the reproducibility of this 
association, further checkpoint inhibitor response data 
were obtained from two additional melanoma cohorts: 
Snyder and colleagues’ cohort13 (n=62, anti-CTLA-4 
treated) and Van Allen and colleagues’ cohort12 (n=100, 
anti-CTLA-4 treated). We did the same analysis in each 
cohort and frameshift indel burden was significantly 
associated with checkpoint inhibitor response in both 
datasets (HR 3·4 [95% CI 1·05–11·27]; p=0·0074 for 
Snyder and colleagues’ cohort and 2·9 [1·15–7·55]; 
p=0·032 for Van Allen and colleagues’ cohort; figure 4A). 
An overall meta-analysis across the three cohorts 
confirmed frameshift indel count to be associated with 
checkpoint inhibitor response (p=4·7 × 10–⁴), and with a 
more significant association than nsSNV count 
(p=4·8 × 10–³). The effect of clonality was additionally 
assessed, and clonal frameshift indels were found to 
have a further significantly predictive advantage beyond 
all frameshift indels (clonal and subclonal; appendix p 7), 
supporting previous work reported by our group.43 
Overall survival analysis was not different between high 
and low frameshift indel groups, possibly because of the 
effect of subsequent therapies on the overall survival 
(OR 2·43 [95% CI 0·77–7·73]; p=0·228 for Hugo and 
colleagues’ cohort25; appendix p 8). We assessed the 
association between frameshift indel load and checkpoint 
inhibitor response in another tumour type by using data 
obtained from Rizvi and colleagues’ small cohort14 of 
31 patients with non-small-cell lung cancer treated with 
anti-PD-1 therapy; no difference was observed (p=0·23). 
To further investigate the importance of frameshift 
indels in non-small-cell lung cancer, we did additional 
analysis using data from Jamal-Hanjani and colleagues’ 
cohort26 of 100 cases, none of whom received treatment 
with checkpoint inhibitors. Consistent with our previous 
findings,43 we observed that patients with lung 
adenocarcinoma whose tumour's harboured a high 
clonal neoantigen burden (higher than upper quartile of 
cohort) exhibited improved relapse-free survival 
compared with the bottom three quartiles (p=0·026). 
However, across all histological subtypes of non-small-
cell lung cancer, survival was found to be significantly 
improved for patients with a high load of frameshift 
indels (vs low load: HR 0·25 [95% CI 0·06–1·08]; 
p=0·045); by contrast, nsSNV load was not formally 
associated (0·36 [0·11–1·21]; p=0·084; appendix p 9). Of 
note, the strongest prognostic predictor was for patients 
in the patients with a high load of both nsSNVs and 
frameshift indels, with elevated levels of both frameshift 
indels and nsSNVs, with no events in this group 

(p=0·025). Multivariate analysis showed some evidence 
of correlation between variables (appendix p 2), so further 
investigation of nsSNVs and frameshift indels as 
predictors in larger patient cohort will be required to 
draw definitive conclusions.

Analyses of the indel load and proportion of response 
achieved from phase 2 studies for the tumour types not 
approved for checkpoint inhibition were limited by the 
small sample size and variable patient inclusion criteria 
such as PDL-1 immunohistochemistry (appendix p 4). 
Nevertheless, the proportion of patients achieving a 
response was higher in triple-negative breast cancer44 
compared with other invasive breast carcinoma molecular 
subtypes, and triple-negative invasive breast carcinoma 
has a higher burden of frameshift and mutant-specific 
neoantigens (figure 3). Furthermore, mutational burden 
has been reported as higher in BRCA1-mutated triple-
negative breast cancer compared with BRCA-wild-type 
triple-negative breast cancer,45 and we specifically observed 
a higher indel load in these cases (appendix p 10). 
However, this outcome did not correlate with tumour-
infiltrating lymphocyte density (appendix p 10), possibly 
because of the small sample size, absence of indel 
immunogenicity in this tissue type, or additional factors 
that modulate tumour-infiltrating lymphocyte density.

Finally, although genomic data are not available to 
correlate with checkpoint inhibitor response in renal 
clear cell carcinoma, we analysed the association between 
frameshift neoantigen load and immune responses 
within the tumour using RNAseq gene expression data. 
Patients were split into groups on the basis of the burden 
of frameshift neoantigens (high defined as 
>10 frameshifts per case, with this threshold set to 
capture the top 10% of cases) versus SNV-neoantigens 
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(high defined as >17 nsSNVs per case, with this threshold 
set to ensure matched patient sample sizes). A high load 
of frameshift neoantigens was associated with upreg
ulation of immune signatures classically linked to 
immune activation, including MHC class I antigen 
presentation, CD8-positive T-cell activation, and 
increased cytolytic activity, a pattern not observed in the 
high SNV-neoantigen group (figure 5). Furthermore, 
correlation analysis within the high frameshift neo
antigen group showed that CD8-positive T-cell signature 
was correlated with both MHC class I antigen presen
tation genes (r=0·78) and cytolytic activity (r=0·83; 
figure 5).

Discussion
In this study, we analysed the pattern of indel mutations 
across 19 solid tumour types and found that renal clear 
cell carcinoma, renal papillary cell carcinoma, and 
chromophobe renal cell carcinoma have the highest 
indel rate as a proportion of their total mutational burden 
and the highest overall indel count and are enriched for 
mutant-specific neoantigens. We also observed that 
indel number is significantly associated with checkpoint 
inhibitor response in melanoma.

Indels are thought to occur as a result of DNA strand 
slippage during DNA synthesis46 and their frequency is 
higher in repetitive sequences, especially those that are 
AT-rich. Indels are also generated through mutagen 
exposure, with a higher number observed in smoking 
than in non-smoking non-small-cell lung cancer 
(lung adenocarcinoma)40 and higher in UV-exposed 
(cutaneous) versus UV-protected (mucosal) melanomas.47 
Less is known about the repair of indels than SNVs; 
however, the role of the mismatch repair mechanism 
is illustrated by the microsatellite instability-high 
phenotype, characterised by excess indels in repetitive 
sequences as seen in patients with Lynch syndrome. 
Although renal clear cell carcinoma has been reported in 
patients with Lynch syndrome,48 this cannot account for 
the overall pattern of indel rates across renal clear cell 
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carcinoma nor the comparatively low SNV burden. Most 
renal clear cell carcinomas have loss of chromosome 3p, 
which encodes the mismatch repair gene MLH1, but the 
remaining allele is rarely mutated in sporadic renal clear 
cell carcinoma. Another relevant gene encoded on 3p is 
FHIT, and its deficiency has been linked with indel 
accumulation in knockout mouse models, but the 
consequences of the heterozygous knockout (whether 
haploinsufficient) are unknown.49 However, as loss of 3p 
is an infrequent event in renal papillary cell carcinoma 
and chromophobe renal cell carcinoma and indels are 
also elevated in both these tumour types, other tissue-
specific phenomena are likely to contribute to the 
increased indel burden across all renal carcinoma 
subtypes.50 Renal clear cell carcinoma and renal papillary 
cell carcinoma arise in the proximal tubule and 
chromophobe renal cell carcinoma in the distal tubule of 

the nephron, and this shared tissue context might be 
important, even if the three subtypes are molecularly 
distinct.32,50,51 The nephron, and the proximal tubule in 
particular, play a crucial role in the reabsorption of vast 
volumes of renal filtrate and elimination of waste 
products of metabolism and toxins, with the effects of 
toxin elimination evident in the increased incidence of 
renal clear cell carcinoma in those individuals exposed to 
aristolochic acid.52 Ochratoxin A, a mycotoxin, induces 
renal tumours in rodents by causing double-strand 
breaks.53 Polymorphisms in genes involved in the repair 
of double-strand breaks are associated with an increased 
risk of renal clear cell carcinoma.54 Double-strand breaks 
are mostly repaired by non-homologous end-joining, 
which is error-prone and can increase the rate of small 
indels (1–10 bp). Therefore, it is possible that an 
environmental toxin causes an excess of double-strand 
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breaks in the nephron and that non-homologous end-
joining’s mutagenic potential is exacerbated by functional 
polymorphisms. In support of this notion we observed a 
higher rate of indels in triple-negative breast cancer, 
which is enriched for BRCA deficiency. BRCA1 has been 
shown to inhibit error prone non-homologous end-
joining.55 However, we did not observe a correlation 
between indel load and tumour-infiltrating leucocytes 
density in BRCA1 triple-negative invasive breast 
carcinoma. 

We observed that indels, which alter the reading frame, 
generate three times as many predicted neoantigens as 
nsSNVs and nine times as many strong mutant-binding 
neoantigens where the wild-type sequence is not 
predicted to strongly bind the HLA molecule (IC50 
>50 nM). Thus, frameshift mutations potentially result 
in a neoantigen landscape, which is both quantitatively 
and qualitatively more potent than that provided by an 
equivalent number of nsSNVs. In keeping with this 
notion, microsatellite instability-high colorectal cancer 
CD8-positive tumour-infiltrating leucocytes density 
correlates positively with the total number of frameshift 
mutations.56 With the exception of polyomavirus-positive 
Merkel cell carcinoma and Hodgkin’s lymphoma, renal 
clear cell carcinoma is the only tumour type with a 
relatively low nsSNV burden among the tumour types 
for which checkpoint inhibitors have been approved for 

clinical use. However, owing to a comparable frameshift 
burden its level of mutant-specific high-affinity 
neoantigens is similar to that observed in non-small-cell 
lung cancer and melanoma, and the same is true of 
renal papillary cell carcinoma and chromophobe renal 
cell carcinoma. Although the evidence for the 
immunogenicity of renal papillary cell carcinoma is 
sparse, complete responses have been noted with the 
use of both high-dose interleukin 257 and anti-PD-1 
therapy.58,59 Therapeutic data in chromophobe renal cell 
carcinoma are limited.

Given the differential benefit across patients, the 
spectrum of immune-related adverse events, and the cost 
of checkpoint inhibitor drugs, efforts to identify 
biomarkers of response are ongoing. PDL-1 expression 
and MSI-H status are the only biomarkers that have been 
linked to drug approval. Mutational and neoantigen 
burdens have been shown to correlate with clinical 
outcomes from checkpoint inhibitor therapy in patients 
with advanced melanoma, colorectal cancer, and non-
small-cell lung cancer.13,14,16 However, some patients with 
cutaneous melanoma with a low nsSNV burden still 
derive benefit from checkpoint inhibitors, as do some 
patients with UV-protected mucosal melanomas,60 which 
have a characteristically low nsSNV burden.61 We analysed 
three melanoma datasets for which both response and 
mutational data were available. In two of the three 
studies,13,14 comprising a total of 96 patients treated with 
either anti-PD-1 or anti-CTLA-4 therapy, frameshift indel 
burden was a better predictor of response than nsSNV 
burden. In the third study12 of 100 patients treated with 
anti-CTLA-4 therapy, the nsSNV burden and frameshift 
burden were both significantly associated with checkpoint 
inhibitor response. We note that most of the patients in 
Van Allen and colleagues’ cohort12 were pretreated and 
therefore any mutational biomarker assessment in this 
group might be less reliable.

Although nsSNVs contribute greatly towards tumour 
immunogenicity in heavily mutated tumours, our 
analyses suggest that frameshift mutations also make a 
significant contribution relative to their overall low 
number. The contribution of frameshift indels in low 
nsSNV burden tumours might be of greater importance 
still, as illustrated by the fact that frameshift mutations 
contribute over a third of the neoantigen load in renal 
clear cell carcinoma. Mutational and checkpoint inhibitor 
response data were not available for renal clear cell 
carcinoma, hence we could not establish a direct 
association between frameshift indels and positive 
checkpoint inhibitor response. In terms of indirect 
evidence in renal clear cell carcinoma, we observed an 
association between the frameshift neoantigens and 
upregulation of machinery necessary for antigen 
presentation by the MHC complex and T-cell activation. 
Furthermore, the CD8-positive T-cell signature in the 
frameshift neoantigen-high group was closely related to 
cytolytic activity, suggesting the presence of antitumour 
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effectors that could confer sensitivity to immunotherapy. 
However, no definitive conclusions can be drawn until 
checkpoint inhibitor response and indel load is directly 
investigated in a sufficiently powered series of renal clear 
cell carcinoma cases.

For frameshift neoantigens to contribute to antitumour 
immunity the mutant peptides must be expressed. 
Frameshifts cause premature termination codons and the 
resultant mRNAs can be targeted for NMD. Published 
analyses62 of germline samples show that premature 
termination codons frequently lead to the loss of 
expression of the variant allele, but that some mutant 
transcripts escape NMD on the basis of the exact location 
of the frameshift within a gene. Combined analyses of 
mutational and expression data from more than 
10 000 cancer samples showed that NMD is triggered with 
variable efficacy, and even when effective might not alter 
expression because of factors such as short mRNA half-
life.33 RNAseq analysis in renal clear cell carcinoma cases 
showed a minimal change in mRNA transcript levels for 
frameshift indel-mutated tumours, suggesting NMD is 
operating on a subset of transcripts, as expected. In this 
context, the strongly hypoxic microenvironment that 
characterises renal clear cell carcinomas might be a 
contributing factor, with evidence showing NMD 
inhibition in cells subject to hypoxia and other perturbed 
microenvironmental conditions.63

Clonal frameshift mutations could be an important 
source of tumour-specific antigens for personalised 
immunotherapy strategies, including peptide vaccines 
and adoptive cell therapy. Tumour-reactive T cells 
recognising a frameshifted product of the CDKN2A 
tumour-suppressor gene were reported to mediate a 
potent in-vivo response in melanoma.64 In microsatellite 
instability-high colorectal cancer, frameshift neopeptide-
specific cytotoxic T-cell responses were observed in 
patients harbouring those mutations.65 Cytotoxic 
T-lymphocyte responses to frameshifted proteins have 
been detected in healthy hereditary non-polyposis 
colorectal cancer-mutation carriers, raising the possibility 
of protective immunosurveillance in this population.66 
Frameshift neoantigens are particularly pertinent in the 
context of mismatch repair-deficiency, which is a pan-
cancer event, and crucially, frameshifts commonly 
occurring in microsatellite instability-high colorectal 
carcinomas have been shown to generate NMD-resistant 
transcripts.67 In support of this, in a study68 of PD-1 
blockade in patients with microsatellite instability-high 
tumours from various cancer subtypes, functional 
analyses in a responding patient showed in-vivo 
expansion of frameshift neoantigen-specific T-cell clones.

Frameshift neoantigens provide a unique opportunity 
to target common tumour-suppressor genes, such as 
such as TP53 and BAP1,69 and their founder status also 
enriches for clonal neoantigens. Acknowledging the 
qualitative difference in the neoantigen burden of renal 
clear cell carcinoma might be integral for optimising 

responses to checkpoint inhibitors. Neoantigens derived 
from driver mutations elicit profound T-cell exhaustion 
via chronic antigen stimulation, generating T-cell pools 
refractory to immune therapy.70 Thus, early administration 
of checkpoint blockade might further improve clinical 
benefit in cancers with particularly antigenic mutations 
such as renal clear cell carcinoma. It is also noteworthy 
that a high differential affinity between wild-type and 
mutant peptides is indicative of enhanced tumour 
protection in vivo.71 The enrichment of mutant-only 
binders by nine times in neoantigens derived from 
frameshift mutations relative to nsSNVs might therefore 
partly explain the predictive power of frameshift 
neoantigens in checkpoint inhibitor responses.

A widely recognised challenge in bioinformatics is 
indel variant calling, due to the inherent nature of short-
read sequencing technology; however, accurate indel 
calling can be achieved within both a research and 
clinical context with strict quality control procedures.72 
While strict quality control procedures can ensure a low 
false-positive rate, as a consequence the true rate of indel 
mutations might be underestimated.

In conclusion, we report that kidney cancers carry the 
highest pan-cancer burden of indel mutations. 
Futhermore, our data suggest that frameshift indels are a 
highly immunogenic mutational class; triggering an 
increased quantity of neoantigens and greater mutant 
binding specificity. Collectively, these data might 
reconcile the outlier nature of immunotherapy responses 
in renal clear cell carcinoma, highlighting frameshift 
indels as a potential biomarker of checkpoint inhibitor 
response and supporting the targeting of clonal 
frameshift indels by both vaccine and cell therapy 
approaches.
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