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Genomic studies of protein-coding regions in tumours—including 
large-scale projects, such as The Cancer Genome Atlas (TCGA) and 
the International Cancer Genome Consortium (ICGC)—have iden-
tified hundreds of potential cancer drivers on the basis of an excess 
of somatic mutations. By contrast, initial whole-genome sequencing 
efforts have yielded few examples of genes with oncogenic point muta-
tions in non-coding regions1–5. However, these studies have focused 
on cohorts with relatively few tumours of any given type and may have 
lacked adequate power and analytical methodologies to robustly detect 
a mutational excess beyond that expected by chance6–8. To efficiently 
study mutations both in coding and in nearby regulatory elements, 
we designed an assay to capture exons, promoter elements, and addi-
tional regulatory regions. We applied it to 360 primary breast tumours 
and patient-matched normal samples, achieving a median sequencing  
depth of 80-fold in the targeted regions (Supplementary Table 1). 
Consistent with previous results, overall somatic mutation rates varied 
among patients from 0.05 to 16.1 mutations per megabase (median 
1.24)8. Coding mutations, copy number alterations, and mutational 
signatures have been extensively studied in breast cancer5,6,9–14. We 
performed similar comprehensive analyses of driver genes on our 
cohort (Extended Data Fig. 1). Here we focus on non-coding mutations 
in promoter regions, defined as 400 base pairs (bp) upstream to 250 bp 
downstream of the annotated transcription start sites (TSS).

Discovery of recurrently mutated promoters
Discovery of regions with an excess of mutations requires careful 
estimation of background (or passenger) mutation frequencies, 
which can be influenced by multiple genomic factors6 (Methods). For 
coding regions, our established analytical methods take into account  
(1) patient-specific coverage information, (2) patient-specific overall 

mutation rate, (3) genomic covariates of mutation rates, and (4) clustering  
of mutations8,15. For promoter regions, we used a similar strategy: 
whereas patient-specific background mutation rates in coding regions 
are estimated on the basis of silent coding and nearby non-coding 
mutations, for non-coding regions we use all mutations, because it is 
unclear which are non-functional. This conservative approach over-
estimates the background rate. We searched for promoters with either 
(1) an overall excess of mutations above expectation or (2) unusual 
clustering of mutations. The latter may detect events in specific tran-
scription factor binding sites, whose signal may otherwise be diluted 
in the larger promoter region.

Our analysis also accounted for the fact that some breast tumours 
have particularly high activity of a mutagenic process mediated by 
apolipoprotein B messenger RNA-editing enzyme catalytic (APOBEC) 
cytidine deaminases9,16,17. These mutations share a characteristic 
sequence context (TCW, where W is A/T) and often occur in dense 
clusters in the genome (kataegis)9,13,16. Because it is not possible to 
model this background mutational process perfectly, we took a con-
servative approach by using our SignatureAnalyzer tool18 to (1) identify 
patients whose overall mutation spectrum suggested high APOBEC 
activity, and (2) assign to each mutation a probability of having arisen 
from the APOBEC process, on the basis of the overall APOBEC activity 
in the patient. We removed mutations with APOBEC probability >​80% 
from our initial analysis.

Our analysis yielded nine promoter elements with significant 
burden or clustering of mutations. These were associated with FOXA1  
(an established breast cancer oncogene), TBC1D12, RMRP/CCDC107 
(bidirectional promoter), NEAT1, LEPROTL1, ALDOA, ZNF143, 
CITED2, and CTNNB1 (false discovery rate (FDR) <​ 0.1; Fig. 1a, 
Supplementary Table 2 and Methods). Because promoter elements 
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often contain GC-rich sequences that can be subject to lower sequence 
coverage and higher misalignment rates, we carefully considered the 
specificity and sensitivity of mutation-calling results for these signifi-
cant genes. We confirmed 97% of the mutations in these promoters by 
deeply re-sequencing their regions in 47 of the 360 tumours (Extended 
Data Fig. 2a, b). Considering the depth of coverage at each mutated 
base and accounting for the typical allele fraction of clonal mutations 
(0.15 in this study)7,19, we found that the expected detection sensi-
tivity for point mutations was close to 100% for mutated sites within 
the significant promoters, except for a recurrent single-base hotspot 
(chromosome 14: 38064406) in the FOXA1 promoter, which had very 
low coverage and expected detection sensitivity of only 33% (Fig. 1b  
and Extended Data Fig. 2c). By re-sequencing this FOXA1 region at 
greater depth in 256 patients from the original cohort, we identified 
four additional patients with the FOXA1 hotspot mutation (Extended 
Data Fig. 2d and Methods). Because FOXA1 is an important oncogene  
in breast cancer, we performed targeted sequencing of the hotspot 
mutation in 64 additional patients, revealing two additional events. 
Finally, we noticed that several of the mutations in the significant  
promoters were located at sites with the classic APOBEC motif. We thus 
examined whether events at these exact sites had been excluded from 
our initial analysis in tumours with high APOBEC activity. We found 
six such mutations in ZNF143, four in TBC1D12, two in ALDOA and 
LEPROTL1, and one each in FOXA1, RMRP, and CTNNB1.

Including all the mutations above, TBC1D12 was altered in 3.9% of 
patients, ZNF143 in 3.6%, FOXA1 in 2.9%, RMRP/CCDC107 in 2.5%, 
ALDOA and LEPROTL1 in 1.7% each, NEAT1 and CTNNB1 in 1.4% 
each, and CITED2 in 0.8% (Fig. 1b). Notably, six of these promoters 
(TBC1D12, LEPROTL1, ZNF143, RMRP, ALDOA, and FOXA1) con-
tained single-site mutational hotspots (at least three mutations at a 
single site). Nine of the 11 promoter mutations in FOXA1 were con-
centrated at a hotspot at position −​81 relative to the annotated TSS and 
in all cases created a G>​A transition. The hotspots in ZNF143, ALDOA, 
LEPROTL1, and TBC1D12 were located in or adjacent to the 5′​ untrans-
lated region (UTR). In the last two cases, hotspots occurred in clustered 
pairs separated by a single nucleotide: at positions −​1 and −​3 relative to 
the TSS of LEPROTL1 and at positions −​1 and −​3 relative to the trans-
lation start of TBC1D12 (Fig. 1b). For both genes, some patients had 
mutations at both positions, one on each of the two homologous chro-
mosomes, consistent with a two-hit model characteristic of a tumour 
suppressor (Extended Data Fig. 3a, b). Identical hotspot patterns and 
co-occurrence of both mutations was also seen in TBC1D12 in breast 
and bladder cancers from TCGA (discussed in a Supplementary 
Note and Extended Data Fig. 4). Single-site hotspots were not seen in  
the promoters of NEAT1, CITED2, and CTNNB1, but their mutations 

were tightly clustered upstream of the TSS, including at directly  
adjacent bases (Fig. 1b). In addition, the TERT promoter was mutated  
in three patients at the two well-described hotspot positions20,21, 
although this observation was not significant (q =​ 0.32; Supplementary 
Table 2).

We next sought to validate our findings by examining mutation calls 
from previously published breast cancer whole genomes (98 patients 
from TCGA and 560 from ref. 5, referred to as BRCA560) and targeted 
sequencing of 46 breast cancer cells lines. In total, in the validation 
cohorts, we found 9 promoter mutations in TCGA and 35 mutations 
in BRCA560, of which 17 (TCGA: 4; BRCA560: 13) occurred in the 
exact hotspots identified in our analysis (Fig. 1b). At the ALDOA, 
CTNNB1, ZNF143 and NEAT1 promoters, a total of seven mutations 
were discovered in breast cancer cell lines (Supplementary Table 3). At 
the FOXA1 promoter, we detected hotspot mutations in seven patients 
from BRCA560 and one sample from TCGA. Similar to our discovery 
cohort, this region had low coverage in whole genomes with corre-
spondingly low detection sensitivity, suggesting that the actual number 
of FOXA1 promoter mutations in the validation cohorts may be higher 
than observed.

Breast cancers are often partitioned into subtypes on the basis of 
receptor and gene expression profiles. To assess whether promoter 
mutations were linked to these subtypes, we combined our discovery 
and validation cohorts owing to the relatively small number of pro-
moter mutations. FOXA1 (odds ratio 5.06; q <​ 0.25) and ZNF143 (odds 
ratio 7.4; q <​ 0.25) mutations occurred predominantly in oestrogen 
receptor (ER)-positive breast cancers, and ZNF143 (odds ratio 15.4; 
q <​ 0.15), ALDOA (odds ratio 15.4; q <​ 0.15), LEPROTL1 (all mutations 
occurred in the associated subtype; q <​ 0.15) and TBC1D12 (odds ratio 
4.9; q <​ 0.25) were associated with the Luminal B expression subtype.

Mutations affect expression and affinity
To test whether mutations in the significant promoters have functional 
consequences, we performed two types of experiment: (1) luciferase 
reporter assays in HEK293T cells to assess their effect on gene expres-
sion; and (2) electrophoretic mobility shift assays (EMSAs) to analyse 
changes in protein binding between the WT and mutant promoters.

For FOXA1 and RMRP, the mutant probes caused increased expres-
sion in the reporter assays and increased protein binding in EMSAs, 
relative to the WT sequences (Fig. 2a, b and Extended Data Fig. 5a), 
suggesting enhanced recruitment of transcriptional activators. This 
gain-of-function pattern is consistent with prior knowledge about these 
genes: FOXA1 is a known breast cancer oncogene that is recurrently 
focally amplified and RMRP is significantly amplified in epithelial 
tumours (Supplementary Table 4). RMRP is a non-coding RNA 
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Figure 1 | Identification of significantly mutated promoters.  
a, Quantile–quantile plot for gene promoter P values. Red dots indicate 
significantly mutated promoters (Benjamini–Hochberg FDR q <​ 0.1).  
b, Detailed view of analysed gene loci for significantly mutated promoters 
including stacked lollipops representing mutations from this study (red), 

98 TCGA whole-genome sequencing (WGS) (green), and 560 breast cancer 
genomes from BRCA560 (ref. 5, purple). Base changes at mutation sites are 
indicated above mutation count. Grey profiles indicate read coverage from 
a representative patient. Blue lines depict mutation detection sensitivity at 
base-level resolution in each promoter region.
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involved in ribosomal RNA processing and has recently been reported 
to have a role in transcriptional regulation22, although its function in 
breast cancer is unclear.

Conversely, three of the four mutations in the NEAT1 promoter 
reproducibly decreased luciferase activity compared with WT sequence 
and caused complete loss of binding in EMSA, one slightly increased 
activity (Fig. 2c). Consistent with this loss-of-function phenotype, 
NEAT1 is focally deleted in ~​8% of breast cancers (Supplementary 
Table 4) and its exonic region is recurrently mutated5. This non-coding 
RNA is critical for mammary development23, but little is known about 
its function in breast tumorigenesis.

The mutant sequences for TBC1D12, ZNF143, ALDOA and 
LEPROTL1 also significantly and reproducibly decreased luciferase 
activity in the reporter assay, but showed less pronounced results in 
EMSA (Extended Data Fig. 5b–e). Possible roles of the statistically 
highly significant TBC1D12 hotspot mutations are discussed in a 
Supplementary Note.

FOXA1 promoter mutations act through E2F
Given the established role of FOXA1 in breast cancer, we sought to 
investigate the precise function of its promoter mutations. Motif 
analysis suggested that the mutation may create a stronger binding 
site for E2F family transcription factors (Fig. 3a and Supplementary 
Table 6). To test whether the hotspot mutation indeed enhances 
E2F binding, we performed four experiments. First, we repeated the 
EMSA in the presence of a competing DNA fragment with strong 
affinity for E2F and a control non-binding probe. The E2F-binding 
probe, but not the control, effectively abolished protein binding to 
both the normal and mutant probes, suggesting that binding to the 
FOXA1 promoter sequence involves E2F proteins (Fig. 3b). Second, we 
repeated the FOXA1 reporter assay with ectopic co-expression of E2F3 
and its co-factor DP1. Co-expression of E2F3/DP1 increased reporter 
activity for both WT and mutant FOXA1 promoter sequences, with 
significantly stronger change in the mutant (Fig. 3c and Extended Data  
Fig. 6a, b). Third, in a pull-down experiment, the mutated FOXA1 

probe showed increased E2F1 (Fig. 3d) or E2F3 (Fig. 3e) and DP1 
protein binding compared with WT. Fourth, using E2F1 chromatin 
immunoprecipitation followed by sequencing (ChIP-seq) data from 
MCF-7 breast cancer cells, we show higher affinity for genomic regions 
that include a 6 bp motif containing the hotspot mutant compared with 
the WT promoter motif (Student’s t-test, P <​ 1.7 ×​ 10−12; Fig. 3f and 
Extended Data Fig. 7). Taken together, these results provide strong 
evidence that the expression changes caused by the FOXA1 promoter 
mutation are mediated, at least partly, by E2F binding.

FOXA1 is a transcriptional pioneer factor that opens chromatin 
allowing ER access to its genomic targets24–26. High FOXA1 levels have 
been observed in poor-outcome tumours and breast cancer metastases,  
where it reprograms the ER binding landscape26. We hypothesized 
that increased abundance of FOXA1 protein increases ER activity. To 
test this, we generated MCF-7 cells stably overexpressing FOXA1 and 
treated them with the ER-antagonist fulvestrant, a compound used to 
treat hormone-receptor positive breast cancer (Fig. 3g and Extended 
Data Fig. 8). Indeed, FOXA1-overexpressing cells grew at a signifi-
cantly faster rate under fulvestrant treatment compared with controls, 
suggesting that increased FOXA1 levels promote cellular tolerance to 
anti-ER treatment in breast cancer.

Finally, we investigated the context in which various types of FOXA1 
mutation occurred. Overall, 35 (9.7%) of the patients in our study 
carried FOXA1 somatic events—including 9 with promoter hotspot 
mutations, 13 with gene (coding, 5′​ UTR and 3′​ UTR) mutations 
and 14 with amplifications (Fig. 3h). These frequencies of mutations 
and focal amplifications are consistent with previous studies10,11. 
Promoter mutations were negatively associated with the BRCA-related 
mutational signature16 (Fisher’s exact test, P =​ 0.05) and positively 
associated with HER2-negative tumours (P =​ 0.002), AKT1 muta-
tions (P =​ 0.04), and enriched among patients of Hispanic ancestry 
(P =​ 0.06). By contrast, focal amplifications were negatively associ-
ated with the APOBEC signature (P =​ 0.05), with a trend towards 
HER2-positivity (P =​ 0.07) and occurred in tumours without PIK3CA 
mutations (P =​ 0.04). FOXA1 coding mutations were associated with 
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Figure 2 | Functional characterization of promoter mutations. Luciferase 
reporter assays show functional impact of mutations on gene expression. 
Individual data points (black) overlap summary statistic boxplots (grey) 
with the median indicated by black horizontal bar. P values calculated with 
two-sided Student’s t-test. EMSA with WT and mutant (Mut.) promoter 

oligonucleotides. Reporter assay and EMSA for FOXA1 (a) and RMRP (b) 
promoter mutations show increase in reporter expression and increased 
protein binding in mutant versus WT sequences. c, Reporter assay and 
EMSA for NEAT1 promoter mutations depict decrease in expression and 
loss of protein binding for three (of four) mutations.
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the presence of PIK3CA missense mutations (P =​ 0.001), an asso-
ciation that was not seen for either promoter mutations or focal 
amplifications. These associations suggest that different types of 
FOXA1 alteration are not completely equivalent and require further 
investigation.

In summary, our results point towards a model where increased 
expression of FOXA1 (for example, through promoter mutation) 

promotes accessibility of ER binding sites, allowing cancer cells to grow 
under lower oestrogen conditions (Fig. 3i).

Power to discover promoter mutations
Finding candidate driver elements requires both sufficiently deep 
sequencing coverage to reliably detect mutations and sufficiently large 
cohorts to achieve statistical significance. The high GC-content of many 
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Figure 3 | FOXA1 mutations act through E2F and increase tolerance 
to anti-oestrogen receptor treatment. a, FOXA1 promoter around the 
hotspot mutation matches consensus motif for E2F1. b, Excess unlabelled 
E2F-binding, but not non-binding, oligonucleotides abolish the gel shift 
observed with both WT and mutant FOXA1 probes. c, Reporter assay for 
FOXA1 WT and mutant (mut.) promoter constructs in HEK293T cells 
co-transfected with E2F3/DP1. Individual data points (black) overlap 
boxplots (grey) with the median indicated by black horizontal bar. P value  
calculated with one-sided Student’s t-test. d, e, Pull-down of nuclear 
protein extract with biotin-labelled FOXA1 WT and mutant (Mut.) 
promoter probes followed by immunoblot with E2F1 (d) or E2F3 (e)  
and DP1 antibody. Input lane contains nuclear protein extract without 
addition of promoter probes. f, IGR analysis for 6-bp sequences from the 

FOXA1 promoter and controls. g, MCF-7 breast cancer cells transfected 
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data. i, Proposed model for mechanism of action of the FOXA1 hotspot 
promoter mutation. Black molecular structure, oestrogen; pink molecular 
structure, fulvestrant. Pale oestrogen receptor complexes represent 
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© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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promoters, which often results in low sequencing coverage, poses a 
special challenge for studies of these regions. Whereas the detection 
sensitivity for our significant promoters was high (except for FOXA1), 
for the median promoter, it was only 44% overall (owing to both target 
design and coverage); we have thus probably detected only about half 
of all mutations in promoter regions.

Notably, previous studies of cancer whole genomes from multiple 
cancer types, including breast cancer1–5, did not find strong evidence 
for many of the significant promoters reported here and, in particular, 
for FOXA1. This is probably for two reasons: low sensitivity in GC-rich 
promoter regions and small cohort sizes. The problem is illustrated by 
the TCGA breast cancer cohort that includes ~​100 patients sequenced 
at 50×​ standard tumour coverage. This data set had high overall median 
detection sensitivity across promoters (93%), but only 1% sensitivity 
at the FOXA1 hotspot mutation site owing to nearly complete lack of 
coverage. In addition, the relatively small sample size provided limited 

power (54%) to detect promoters mutated in 5% of samples, compared 
with this study (69%) (Fig. 4a and Extended Data Fig. 9).

Interestingly, although the proportion of patients carrying muta-
tions in the significant promoters was lower than for coding genes, 
the mutation frequencies were similar when correcting for target size. 
For example, the most significant promoter in our data, TBC1D12, 
was mutated in ~4% of patients, which was considerably lower than 
the most frequently altered coding genes (TP53 in 33% and PIK3CA 
in 27%). Nevertheless, the promoter hotspots were among the most  
frequent single-site recurrent events across all sequenced territory, 
including both coding and non-coding (Fig. 4b). In principle, lower 
frequency may reflect a smaller target size, weaker selective advantage, 
or both. To assess the effect of target size, we compared the mutation 
rate of events that could potentially lead to functional alterations, μf, 
in the coding regions of known cancer drivers and our significant 
promoters. Aside from the expected outliers TP53 and PIK3CA, values 
of μf for the promoters were similar to or exceeded those of several 
well-known coding drivers (Fig. 4c), supporting the view that the low 
observed frequency of promoter mutations may be due, at least in part, 
to their smaller functional genomic footprint.

Discussion
We performed a comprehensive analysis of promoters in a large cohort 
of 360 patients with primary breast cancer and discovered significantly 
mutated promoters for nine genes. Like TERT, all nine genes show 
recurrent mutations at a specific base or at nearby bases—suggesting 
that they target-specific elements within the promoter (for example, 
transcription factor binding sites). In three cases (FOXA1, RMRP, 
and NEAT1), we also found compelling experimental evidence that 
the promoter-proximal mutations lead to significant consequences for 
transcription.

Using several functional experiments, we demonstrate that the 
FOXA1 promoter mutation has a substantial effect on gene expression. 
Through its role as a pioneer factor for oestrogen receptor, higher 
levels of FOXA1 protein may increase cellular sensitivity to oestrogen. 
While FOXA1 expression has been linked with positive clinical 
outcome27–29, high levels of FOXA1 have recently been associated 
with poor outcome, metastasis, decreased response to fulvestrant, 
and endocrine resistance26,30,31. Identification of FOXA1 alterations 
in patients undergoing hormone therapy may thus be important for  
recognizing mechanisms for resistance to therapy and tumour 
progression.

Appropriate clinical treatment will ultimately depend on the ability 
to recognize all functionally important mutations in each patient—
including in regulatory elements, such as promoters. Identifying the 
targets of regulatory events will require systematic analysis of large 
cohorts of patients across cancer types, followed by experimental 
validation. Promoter mutations may help explain activation or 
inactivation of known cancer genes in patients lacking coding muta-
tions and may lead to discovery of new cancer genes. Completing our 
understanding of all alterations—coding and non-coding—in cancer 
genes will be an important foundation for cancer precision medicine.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
No statistical methods were used to predetermine sample size. The experiments 
were not randomized. The investigators were not blinded to allocation during 
experiments and outcome assessment.
Patient collections. Mexican samples were collected at the Instituto de 
Enfermedades de la Mama, FUCAM A.C., Mexico City, after informed consent. 
The fresh frozen tumours were collected during tumour resection surgery. After 
macroscopic evaluation by a pathologist, tumour tissues were sectioned in half. 
One half was fixed using buffered formalin and embedded in paraffin (FFPE). 
The other half was frozen in liquid nitrogen. The paraffin-embedded sections 
were analysed by two independent pathologists and regions with tumour cells 
were punched using a 2 mm-gauge needle to obtain cores of the FFPE tissue 
blocks with a tissue microarrayer. Frozen tissues were stored at −​80 °C until 
further processing. Additional FFPE tumours were collected at the Anatomic 
Pathology Department of the Instituto de Enfermedades de la Mama. All samples 
were collected before treatment. Oestrogen and progesterone receptors, as well 
as HER2 protein expression, were evaluated by immunohistochemistry using the 
oestrogen receptor/progesterone receptor pharmDx and HercepTest, respectively 
(Dako, Denmark). DNA extraction was performed using an All Prep Qiagen kit 
following the manufacturer’s protocol. DNA was quantified by spectrophotometry 
(nanodrop system) and the integrity of the DNA was evaluated in 2% agarose 
gels. All procedures and protocols were reviewed and approved by the Research 
and Ethics Committees of the Instituto Nacional de Medicina Genómica and the 
Instituto de Enfermedades de la Mama, FUCAM, A.C.

Spanish samples were collected at the Vall d’Hebron University Hospital 
(Barcelona) after informed consent. After macroscopic evaluation by a pathologist, 
tumour tissues were sectioned in half. One half was FFPE and submitted for routine 
histopathological evaluation. The other half was frozen in liquid nitrogen and 
stored at −​80 °C until further processing. Oestrogen and progesterone receptors, as 
well as HER2 protein expression, were evaluated by immunohistochemistry in the 
diagnostic FFPE sample using pharmDx (Dako, Denmark) and the anti-c-erbB-2 
clone CB11 (Novocastra, UK), respectively.

Additional samples were acquired from commercial tumour banks ISLBio and 
Bioserve. This study was approved by the Broad Institute Institutional Review 
Board. Characteristics of patients are listed in Supplementary Table 1.
ExomePlus library construction and sequencing. Whole-exome capture was 
performed using Agilent SureSelect ExomePlus bait. This expanded human 
content was manufactured by Agilent (Agilent Technologies, USA), with ~​155 Mb 
baited target and the Broad Institute in-solution hybrid selection process32,33. 
ExomePlus includes the standard exome targets with the following additions: 
intronic and promoter sequences for known cancer genes, significant targets 
identified in cancer genome-wide association studies, TCGA, and the Cancer Cell 
Line Encyclopedia. Also included are novel exons identified in the 29 mammals 
comparative study, regulatory motifs from Ensembl, as well as lincRNA sequence 
and additional sequence in known areas of copy number alterations34: UTRs 
(130,452 targets/37 Mbp), SNP array probe sites (99,877 targets/0.1 Mbp), Ensembl 
regulatory regions (74,943/48 Mbp), lincRNAs (22,720/8.7 Mbp), regulatory motifs 
(21,513/0.33 Mbp), other (82,937/61 Mbp).

In summary, genomic DNA was sheared, end repaired, ligated with barcoded 
Illumina sequencing adapters, amplified, size selected, and subjected to in-solution 
hybrid capture using the ExomePlus bait set32,33. Resulting Illumina sequencing 
libraries were then qPCR quantified, pooled, and sequenced with 76 base-paired-
end reads using Illumina GAII or HiSeq 2000 sequencers (Illumina, USA). 
Alignment was performed with the Burrows–Wheeler Alignment tool35 to the 
human genome hg19/GRCh37 assembly. Of the targeted 155 Mb on the array, a 
median of 139 Mb (range 126–147 Mb) of sequence were covered at sufficient depth 
for mutation calling in the 360 patients. Mean target coverage across all tumour 
samples was 80.8-fold (range 48–164), across all normal samples 81.5-fold (range 
46–165). Mean target coverage exceeded 80% of the targeted territory for most 
coding and non-coding categories, with the exception of promoters, which are 
typically underrepresented in PCR-based next-generation sequencing libraries 
(37%) owing to their high GC-content. Distribution of mutations with respect to 
array design, coverage, and fraction of variant alleles were as expected, suggesting 
that mutation calling and filtering steps did not introduce biases in non-coding 
regions.
Quality control and mutation calling. Sequencing data were processed using 
the standard Broad pipeline. Cross-contamination of sequencing data with DNA 
from a different individual was evaluated with ContEst36, and only samples with 
contamination less than or equal to 4% were kept for analysis. Somatic muta-
tions were identified between tumour-normal pairs with MuTect as previously 
described7, with a standard panel of normal samples extended with information 
from the ExomePlus cohort. Local realignment, an oxidation artefact filter37, 
FFPE artefact filter (C.S. et al., manuscript in preparation), and a panel of normal 

samples filter were applied to the variant set to remove alignment and technical 
artefacts and germline contamination. Short insertions and deletions (indels) for 
coding regions were identified with Indelocator. Genomic annotation for coding 
and non-coding regions was performed with Oncotator38. In total, nearly 100,000 
annotated single-nucleotide substitutions (median 175 per patient; range 7–2,335) 
were included in the analysis. Mutations in TCGA whole-genome sequencing were 
called with MuTect and filtered with oxidation and panel of normal samples filters 
to remove artefacts.
Copy number estimation. Copy number estimates from ExomePlus sequencing 
data were generated using the GATK CNV pipeline (https://github.com/
broadinstitute/gatk-protected/blob/1.0.0.0-alpha1.2.2/docs/CNVs/CNV-methods.
pdf). Copy number estimates were taken from GISTIC2 thresholded output39.
Recovery of mutations lost to tumour-in-normal contamination. We observed 
contamination with copy number events and somatic variants in many of the 
normal adjacent tissue controls in the data set. This contamination with tumour 
DNA in the matched normal tissue led to an underestimation of somatic variants 
as they were observed in the control. We used our novel deTiN pipeline to score 
tumour-in-normal (TiN) contamination for each patient (Supplementary Table 1)  
on the basis of copy number variations and mutation calls40. For samples with  
<​30% TiN, this pipeline recovered a combined total of ~​1,000 mutations. Samples 
with ≥​ 30% TiN estimate were removed from the analysis set. After ContEst and 
TiN filtering, 360 patients remained for analysis in our cohort.
Ancestry inference. Sample ancestries were inferred on the basis of principal 
component analysis of the normal (germline) samples using a subset of 5,824 
common variants chosen to be autosomal, polymorphic across multiple 
ancestry populations, present in the targeted coding regions of most exome  
capture platforms, in approximate linkage equilibrium, and in Hardy–Weinberg 
equilibrium41. Using EIGENSTRAT42, we calculated six principal component 
vectors for the 360 study samples and a set of 1,489 training samples from the 1000 
Genomes Project (http://www.1000genomes.org/data) and Exome Sequencing 
Project (http://evs.gs.washington.edu/EVS/) with known (self-reported) ancestry 
annotations. Given the principal component coefficients of the training samples 
with known ancestry, we calculated the coordinates of the centres of each ancestral 
group cluster in principal component coefficient space. Then each sample with 
unknown ancestry was assigned an ancestry on the basis of the shortest Euclidean 
distance to one of the ancestral centres. We inferred the ancestry of study samples 
on the basis of the first three principal components, which we found to be the 
minimal set of components that demarcated ancestral group boundaries in the 
1000 Genomes and Exome Sequencing Project training set.
Description of non-coding significance analysis. Non-coding significance 
analysis (MutSigNC) is based on the concepts implemented in our MutSig suite 
of tools for coding genes6,8,15, and takes into account patient-specific mutation 
rates, patient-specific sequencing coverage, as well as information about regional 
mutation clustering. Several algorithms for cancer driver gene detection based on 
these factors have been published1–6,43–46. Explicit covariate integration was not 
performed since we failed to observe strong correlations between mutation rate 
in promoters and replication time, gene expression and GC-content (Extended 
Data Fig. 10). Instead, we calculated the background mutation rate only from  
promoter regions (rather than all mutations in a given patient). Focusing only on 
the promoter regions takes into account potential factors that may affect promoter 
regions (for example, chromatin state, GC-content, etc.). We used patient- and 
region-specific coverage information to account for variable coverage in GC-rich 
regions. To account for the effect of APOBEC mutations, we excluded muta-
tions with ≥​0.8 probability of originating from any of the APOBEC mutation  
signatures.

For each genomic element (for example, promoter), MutSigNC calculates the 
probability that the region will be mutated in at least k patients by chance (on the 
basis of our null background model). For each patient p, the total mutation count 
across all analysed elements, np, and total bases sufficiently covered for mutation 
calling7 across these elements, Np, are used to estimate the patient-specific back-
ground mutation rate.

MutSigNC then calculates the probability of seeing at least one mutation in 
patient p in the genomic element r using

= −P H n n N1 (0; , , )r p r p p p, ,

where H is the cumulative beta-binomial probability8. We use convolution of these 
patient-specific distributions to calculate the distribution of observing exactly x 
patients with at least one mutation in element r, Pr (n = x). Finally, the P value is 
calculated as

∑≥ = − =
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For displaying the quantile–quantile (Q–Q) plot, we used a mid-p approach to 
handle the discrete nature of the P values47,48.

A search for clustered mutations was performed similar to the CLUMPS 
algorithm for three-dimensional clustering of protein-coding mutations49. For each 
genomic element, we evaluated whether mutations occurring in it were clustered 
together more than expected by chance. Here we tested for significant clustering 
only genomic elements with at least three mutations.

We made several modifications to the weighted average proximity (WAP) score 
initially described in CLUMPS: (1) the difference between genomic coordinates of 
two mutations was used as the distance metric d; and (2) all mutations at hotspot 
sites were weighted equally in the score calculation. We chose t =​ 6 since it reflected 
the typical size of the core of transcription factor binding motifs. Each genomic 
element was assigned a WAP score on the basis of the mutations in it according to

∑=
≠

− /WAP e
i j

d t( 2 )i j, 2 2

We evaluated statistical significance of an element’s WAP score with a permutation- 
based approach using a multinomial distribution of the normalized base-wise 
coverage in the tested element to accommodate uneven coverage in promoter 
regions. An average coverage profile across all patients was generated for this 
purpose from base-wise coverage output by MuTect7. In addition (and in contrast 
to CLUMPS), in each iteration, we placed mutations independently according to 
the multinomial distribution. Significance was then calculated as the number of 
WAP scores obtained through permutations greater than or equal to the observed 
score. We stopped the permutations as soon as the uncertainty of the P value 
estimate dropped below a predefined threshold or we reached 106 permutations50.

To evaluate the robustness of our results, we repeated the analysis with t =​ 4 and 
t =​ 8. Only CTNNB1 and CITED2 did not reach significance with t =​ 4, suggesting 
that these genes are not robust to such parameter changes. We thus focused on the 
robust genes for experimental follow-up and further analysis.

MutSigNC evaluates significance through combining the burden and clustering 
P values. For regions with at least three mutations, we combined these independent 
P values with Fisher’s method. For regions with fewer than three mutations, only 
the burden test P value was used. Regions with fewer than ten bases sufficiently 
covered were removed from the analysis. We corrected for multiple-hypothesis 
testing by using the Benjamini–Hochberg FDR procedure51 and identified 
significantly mutated elements as those with q <​ 0.1.

Promoters were defined as regions extending 400 bp upstream to 250 bp down-
stream from an annotated TSS from the RefGene database downloaded on 10 
June 2013. Downstream sequence was included because mutations near the TSSs 
may have impacted gene expression through creation or disruption of recogni-
tion motifs for transcriptional regulators, even if they were located downstream 
of the TSS. We chose the interval size such that at least 80% of the average DNase 
hypersensitivity signal from normal mammary epithelial cells52 around TSS was 
contained in the region. Coding sequence within this region, and microRNA and 
snoRNA entries, were removed from the tested genomic elements.

Consequences of promoter mutation on transcription factor binding were 
evaluated through query of multiple PWM data sets53–58. Significant matches 
were determined with the TFM-pvalue program59 at a significance threshold 
a =​ 1 ×​ 10−4. Disrupted/created motifs were inferred on the basis of the score 
difference between the WT and mutant sequence match score.

We note that the previously described recurrent mutation in the PLEKHS1 
promoter1,2 was absent from our analysis since it was not part of our target design 
and hence was not covered for mutation discovery. Similarly, a small region 
upstream of WDR74 was targeted on the ExomePlus assay, and this region—owing 
to its location >​400 bp upstream of the annotated WDR74 promoter—was not 
included in the promoter search list. Manual inspection of the previously published 
location of WDR74 promoter mutations, however, revealed only two patients with 
mutations located in this region.
Mutation validation and de novo detection of promoter mutations. We designed 
a targeted amplicon assay (Illumina TruSeq Custom Amplicon) to validate several 
recurrently mutated promoter mutations in 47 patients from our initial cohort and 
46 additional breast cancer cell lines (median coverage across samples and genes 
was approximately 3,900×​).

Samples were plated at 25 μ​l with a total concentration target of 15–20 ng μ​l−1.  
The samples were hybridized with their custom oligonucleotide pool and then 
run through a series of steps consisting of washing, extension and ligation 
of the bound oligos, and PCR amplification, where Illumina custom i5 and i7 
sequencing primers were added to the final product. After this amplification step, 
the product was cleaned with solid-phase reversible immobilization (SPRI) beads 
and quantified using PicoGreen. The product was normalized and pooled using 
the Hamilton Starlet robot and sequenced on a HiSeq 2500.

Validation of mutations in tumours with previously called mutations was 
performed using MutationValidator60. Additional mutations were detected using 
MuTect without a matched normal sample.
Targeted sequencing of FOXA1 promoter mutation. A 240 bp region of FOXA1 
(chromosome 14: 38,064,261–38,064,500; hg19) was amplified and sequenced 
in 623 tumour or normal samples and 47 breast cancer cell lines. These PCRs 
were performed in two reactions. Round-1 PCR primers contained target-specific 
sequences and Illumina adaptor sequences, producing a product of 308 bp. 
Round-2 PCR was a ‘tailing’ PCR in that PCR2 primers contained overlap of the 
Illumina adaptor sequence, as well as the flow cell attachment sequence, and an 
8 bp index on the reverse primer between the adaptor sequence and flow cell 
attachment sequence. This tailing PCR produced sequence-ready constructs 
(364 bp) that did not require further library construction. First-round PCR was 
performed using a Platinum Pfx DNA polymerase kit (Life Technologies,). PCR1 
reactions consisted of 50 μ​l: 2 μ​l DNA (at ~​25 ng μ​l−1), 3 μ​l mixed F/R tailed 
target-specific primer (at 20 μ​M mixed), 5 μ​l 10×​ Pfx amplification buffer, 1.5 μ​l  
dNTPs (at 10 mM each (Agilent Technologies)), 0.8 μ​l Pfx Platinum DNA 
polymerase, 1 μ​l MgSO4 (at 50 mM), 5 μ​l 10×​ Pfx Enhancer Solution, and 31.7 μ​l 
nuclease-free water. The polymerase (0.4 μ​l polymerase +​ 1.6 μ​l water) was added to 
reactions after 1 min at 95 °C. Thermal cycling consisted of 95 °C for 5 min (paused 
at 1 min to add polymerase) and 33 cycles of (95 °C 30 s, 55 °C 30 s, 68 °C 1 min). 
A sample of PCR1 products (and negative control) was visually inspected on a 
Laboratory Chip GX II Caliper Instrument (Perkin Elmer). Next, second-round 
index-tailing PCRs were again performed with a Platinum Pfx DNA polymerase kit 
(Life Technologies,). PCR2 reactions consisted of 50 μ​l: 3.9 μ​l PCR1 product, 2.4 μ​l  
mixed F/R indexing primer (at 25 μ​M mixed), 5 μ​l 10×​ Pfx amplification buffer, 
1.5 μ​l dNTPs (at 10 mM each (Agilent Technologies)), 0.4 μ​l Pfx Platinum DNA 
polymerase, 1 μ​l MgSO4 (at 50 mM), 5 μ​l 10×​ Pfx Enhancer Solution, and 30.8 μ​l 
nuclease-free water. The polymerase (0.4 μ​l polymerase +​ 1.6 μ​l water) was added to 
reactions after 1 min at 95 °C. Thermal cycling consisted of 95 °C for 5 min and eight 
cycles of (95 °C 30 s, 55 °C 30 s, 68 °C 1 min). Indexed amplicons were pooled in 
equal volumes (96 reactions per pool), and purified using 1.5×​ SPRI cleanup with 
Agencourt Ampure XP beads (Beckman Coulter). Final amplicon library pools 
were visually inspected and quantified on a BioAnalyzer (Agilent Technologies). 
The library was re-quantified by SYBR green qPCR before denaturing and cluster 
generation. A PhiX library, derived from the well-characterized and small PhiX 
genome, was spiked in at 92% to add diversity to high-GC single-amplicon clusters 
for improved cluster imaging. One MiSeq run (2 ×​ 150 bp paired end with standard 
sequencing primers) was performed for each pool of indexed amplicons, using 
standard sequencing protocols (Illumina).
Primer sequences (5′–3′). Target-specific primer sequences: forward, 
CTGAGCAGCTGCAGTCACC; reverse, CTCTCAAGCGACGTAAGATCCA. 
PCR1 primers (target-specific primers with ‘tails’): forward, ACACTCTTTCCCTAC 
ACGACGCTCTTCCGATCTCTGAGCAGCTGCAGTCACC; reverse, GTGACT 
GGAGTTCAGACGTGTGCTCTTCCGATCTCTCAAGCGACGTAAGATCCA. 
PCR2 primers (tailing/indexing PCR): forward, AATGATACGGCGACCACCGA 
GATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT; reverse, CAAGCAG
AAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTG
CTCTTCCGATCT.
Mutation calling from ultra-deep sequencing data. Targeted sequencing data 
for the FOXA1 locus was analysed for 330 tumours with at least 100×​ coverage 
(median approximately 69,000×​) over the mutation site. Of these, 64 were not part 
of the initial ExomePlus cohort, and 140 tumours had ExomePlus array data but 
were not covered at the FOXA1 hotspot mutation site. For 14 patients, targeted 
sequencing data from fresh frozen as well as FFPE tumours were generated.

Four FOXA1 mutations called by MuTect from ExomePlus data were subjected 
to MutationValidator with FOXA1 targeted sequencing. The three G>​A mutations 
could be validated; a G>​C mutation failed to validate and was discarded from 
further analysis.

Allele counts were generated for each sample using Samtools mpileup61. Base 
calls with quality scores less than 25 were removed from the analysis. We used a 
binomial model to call mutations at the FOXA1 hotspot position (chromosome 
14: 38064406; hg19) in each sample, assuming a 5% noise level. For each sample 
and variant base at this position, we calculated the probability of observing at 
least nalt bases by chance, given the total coverage ntotal observed at this site and 
the noise level p:

≥ = − −P n n F n n p( ) 1 ( 1; , )alt alt total

where F(nalt; ntotal, p) is the cumulative binomial distribution function:
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This method called mutations in targeted sequencing that were identified by 
MuTect in ExomePlus data and validated above, and detected mutations in six 
additional patients. For three of the nine total patients with a FOXA1 hotspot 
mutation (validated above and detected by the ultra-deep sequencing), both FFPE 
and fresh frozen data were available. In all cases, the mutation was seen both in 
fresh frozen and in FFPE data.

No FOXA1 hotspot mutations were detected in the tested breast cancer cell 
lines (AU565, BT-20, BT-474, BT-483, BT-549, CAL-120, CAL-51, CAL-85-1, 
CAMA-1, DU4475, EFM-19, EFM-192A, HCC1143, HCC1187, HCC1395, 
HCC1428, HCC1500, HCC1569, HCC1599, HCC1806, HCC1937, HCC1954, 
HCC202, HCC2157, HCC2218, HCC38, HCC70, HDQ-P1, HMC-1-8, Hs343T, 
Hs578T, JIMT-1, MCF-7, MDA-MC-134-VI, MDA-MB-157, MDA-MB-175-VII, 
MDA-MB-231, MDA-MB-361, MDA-MB-415, MDA-MB-436, MDA-MB-453, 
MDA-MB-468, T-47D, UACC-812, ZR-75-1, ZR-75-30, UACC-893).
TCGA copy number data. GISTIC significant copy number events were obtained 
from the Broad Institute’s copy number portal (http://www.broadinstitute.org/tcga/
gistic/browseGisticByGene), run 2015-06-01 stddata__04_02_2015 regular peel-off.
Intragenomic replicates analysis. Comparison of binding affinity of 6-bp WT 
and mutant E2F-like recognition sequences (Fig. 3f and Extended Data Fig. 7a) 
in the FOXA1 promoter was performed according to ref. 62. Motif instances for 
WT and mutant sequences as well as a scrambled control for each were identified 
in the genome and subset to instances overlapping open chromatin regions in 
MCF-7 breast cancer cells52 (Extended Data Fig. 7b). E2F1 ChIP-seq signal for 
MCF-7 cells52 was collated around each of the motif instances, and averages 
for WT and mutant motifs were compared using a two-sided Student’s t-test.  
Motif and ChIP-seq data analyses were performed using the HOMER package 
(version 4.1)63 and custom R code.
Power analyses. Power analyses were performed as previously described6. For 
this study, we first determined a median mutant allele fraction of 0.15 across all 
360 patients and then calculated the average mutation detection sensitivity across 
all bases in each promoter for this mutant allele fraction in 26 patients of the 
data set (representing the 10 most and least covered samples and 6 with matched 
TCGA whole-genome sequencing data from a previous study)14. The median 
detection sensitivity was 44%, corresponding to a median ‘missed’ mutation rate 
m of 1 −​ 0.44 =​ 0.56. Detection sensitivity of TCGA breast cancer whole genomes 
was performed on 100 tumour alignments, yielding a median detection sensitivity 
of 93% across all promoter regions.

We used a binomial model to calculate the power to discover recurrent events 
at different population frequencies as a function of patient cohort size and a fixed 
detection sensitivity of d =​ 0.44 =​ (1 −​ m), where m is the mis-detection rate, as 
described in ref. 6. We assume a gene length L =​ 650 (the targeted promoter size), 
a fixed mutation rate μ of 2.96 mutations per megabase (the average mutation 
rate), and an fg value of 1. We then calculated the probability of seeing at least one 
mutation by chance in each patient as p0 =​ 1 −​ (1 −​ μfg)L and the signal for each 
mutation population frequency r as p1 =​ 1 −​ (1 −​ p0) ×​ (1 −​ r×​d). When either the 
background mutation rate μ or mutation frequency r is high, this guarantees p1 ≤​ 1; 
otherwise the equation reduces to p1 ≈​ p0 +​ r×​d (ref. 6).

To determine power, we first calculated the minimal number n{min} of patients 
that would reach genome-wide significance: that is, P <​ 0.1/25,000, assuming 
25,000 promoters and p =​ p0. The power is then the probability of observing at 
least n{min} patients with a mutation under the alternative model (that is, a binomial 
model with p =​ p1). Smoothed power calculations were performed for constant m 
and variable r (Fig. 4a and Extended Data Fig. 9).

Calculation of functional mutation rates (Fig. 4c) was performed assuming 
total territory for promoters and 75% of the coding gene length for coding genes.
Validation data and association tests. Mutation and clinical data were aggregated 
from the ExomePlus, TCGA BRCA10,11, and BRCA560 (ref. 5) cohorts. For  
TCGA patients, promoter mutations were derived from whole-genome sequences 
and protein-coding mutations obtained for matching exome aliquots from  
http://firebrowse.org/?cohort=BRCA# because the deeper exome coverage 
provided higher power to discover mutations in coding regions. Coding driver 
mutation events for the data set from BRCA560 were obtained from Supplementary 
Table 14 in that reference. Non-coding mutations for FOXA1 were obtained from 
the authors. Only SNP/indel-derived events were included for consistency with 
the other cohorts of patients.

For promoter mutations with single-site hotspots (TBC1D12, ZNF143, 
ALDOA, FOXA1, LEPROTL1), only mutations at these positions were included 
in association tests. For genes with clustered (but not necessarily single-site) 
mutations, events from the TCGA and cohorts from BRCA560 were included if 
they were located within 5 bp of the cluster boundaries identified in the ExomePlus 
data. Associations of various FOXA1 alterations (Fig. 3h) were restricted to the 
ExomePlus patient cohort.

Association tests between promoter mutations and other patient-specific 
characteristics were performed using Fisher’s exact test.
Luciferase reporter assays. HEK293T cells were obtained from the American 
Type Culture Collection (ATCC) and tested negative for mycoplasma 
contamination. Reporter constructs were generated by cloning WT or mutant 
promoter sequences into the 7-TFP Wnt signalling reporter64, replacing the 
seven TCF binding-site-containing promoter upstream of the firefly luciferase 
reading frame. Briefly, DNA sequence blocks representing the various WT and 
mutant promoter sequences, starting with a unique PstI site, and including the 
5′​-most 174 bp of the luciferase open reading frame (ending in a unique BstB1 
site) were obtained from GenScript and sub-cloned into the PstI- and BstBI-
digested 7-TFP vector. After construct verification by DNA sequence analysis, 
100 ng of these reporter constructs together with 100 ng of the Renilla luciferase 
expression vector pGL4.70[hRluc] (Promega) were co-transfected in triplicate 
into HEK293T cells using X-tremeGENE 9 DNA transfection reagent (Roche). 
Measurements of normalized luciferase activity were determined after 48 h by using 
the Dual-Luciferase Reporter Assay System (Promega) according to the manufac-
turer’s instructions. For the reporter assay evaluating the effect of E2F and DP1 
on the FOXA1 promoter, E2F3 and DP1 expression vectors65 were transfected 
into HEK293T cells and nuclear extracts prepared 48 h after transfection. E2F3 
was chosen for this experiment because it has been shown that E2F1 can induce 
apoptosis upon overexpression66,67. Construct details are listed in Supplementary 
Table 7. Reporter assays for TBC1D12, LEPROTL1, ZNF143, ALDOA, RMRP, 
and FOXA1 promoters were performed as three biological replicates with three 
technical replicates each. Four biological replicates were performed for NEAT1 
promoter mutations, with the exception of mutation 2 (two replicates). Data points 
for FOXA1 E2F/DP1 reporter assays were derived from three biological replicates.

To justify use of the Student’s t-test for reporter assay comparison where the 
number of individual observations was small, we tested whether luciferase/Renilla 
ratios from the FOXA1 experiment (as representative example) were indeed  
t-distributed. First, t-scores were calculated for all values as

=
−
/

t x m
n(s )

where m is the sample mean, s the sample standard deviation, and n the number of 
observations. We then evaluated the distribution of t-scores against a t-distribution 
with one degree of freedom using the two-sided Kolmogorov–Smirnov test. With  
P values of 0.28 (WT observations) and 0.21 (mutant observations), the  
t-distribution and observed distributions did not differ significantly from each 
other, and thus Student’s t-test was an appropriate test for comparing reporter 
assay results.
EMSAs. EMSAs were performed using a ThermoFisher Scientific LightShift 
Chemiluminescent EMSA kit following the manufacturer’s instructions. Briefly, 
HEK293T cell nuclear extracts were prepared using NE-PER Nuclear and 
Cytoplasmic Extraction Reagents (ThermoFisher Scientific) according to the 
manufacturer’s protocol. EMSA reactions included 1×​ binding buffer, 50 ng  
poly(dI-dC), 2.5% glycerol, 0.06% Nonidet P-40, 5 mM MgCl2, 19 μ​g BSA, 2 μ​l 
nuclear extract, and 20 fM biotin-labelled probes. Specificity of mobility shifts was 
analysed by including increasing amounts of unlabelled WT or mutant FOXA1 
competitor oligonucleotides, or WT or mutant E2F binding primers68. Competitor 
probes were added at concentrations of 4 pM and 8 pM. Reactions were incu-
bated for 20 min at room temperature, size-separated on a 6% DNA retardation 
gel (ThermoFisher Scientific), and transferred to a Biodyne B Nylon membrane 
(ThermoFisher Scientific). Free or protein-bound biotin-labelled probes were 
detected using streptavidin–horseradish peroxidase conjugates and chemilumi-
nescent substrate according to the manufacturer’s protocol. Probe sequences for 
promoter regions are listed in Supplementary Table 8 and for E2F were taken 
from ref. 68.
E2F/DP1 biotin pull-down assay. Magnetic streptavidin Dynabeads M-280 
(Invitrogen) were blocked in 5% non-fat milk in PBS for 30 min and subse-
quently washed with binding buffer (20 mM Tris/HCl, pH 7.5, 0.5 M NaCl, 
1 mM EDTA) using a magnetic separator. WT and mutant 3′​-biotinylated dou-
ble-stranded DNA oligonucleotides were generated by denaturing equal amounts 
of complementary oligonucleotides for 5 min at 90 °C, followed by overnight cool-
ing to room temperature. Oligonucleotides were coupled to beads by incubating 
them for 30 min in binding buffer with constant shaking. The DNA-coupled beads 
were washed two times with wash buffer (25 mM HEPES, pH 7.9, 100 mM KCl, 
12 mM MgCl2, 1 mM EDTA, 5% glycerol, and 2 mM dithiothreitol) and beads 
(500 fmol DNA per reaction) were incubated with 200 μ​g 293T nuclear extract in 
50 μ​l 50 mM HEPES/KOH, pH 7.8, 50 mM KCl, 10 mM MgCl2, 0.5 mM EDTA, 
1.5 mM dithiothreitol, 2.5% glycerol buffer. Reactions were incubated at 30 °C 
for the indicated times before cross-linking for an additional 10 min with 0.5% 
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formaldehyde (final concentration; time zero equates to cross-linking immediately 
after extract addition). Beads were washed twice with 50 μ​l wash buffer, resus-
pended in 20 μ​l SDS sample buffer, and cross links were reversed by heating for 
2 h at 65 °C. Finally, proteins were separated on a 10% SDS polyacrylamide gel 
followed by transfer to polyvinylidene difluoride (PVDF) membrane and immu-
noblot analysis with the indicated E2F or DP1 antibodies.
Fulvestrant sensitivity assay. The fulvestrant-sensitive, single-colony-derived 
MCF-7 subline U2 was described previously69. MCF-7/U2 cells were transfected 
with a FOXA1 expression plasmid (open reading frame ccsbBroad304_06385) or 
a control vector (pLX_TRC304) provided by the Genetic Perturbation Platform 
of the Broad Institute using the Neon electroporation system (ThermoFisher 
Scientific). Colonies of stable transfectants were isolated after 2 weeks of blasticidin 
selection and FOXA1 protein expression was evaluated by western blotting (anti-
FOXA1 antibody ab170933, Abcam, Cambridge, Massachusetts, USA; Extended 
Data Fig. 8). Three independent FOXA1-overexpressing clones and three 
mock-transfected clones were subjected to cell growth and fulvestrant sensitivity  
assays as previously described69 using a CyQUANT NF kit (ThermoFisher). 
Measurements for each clone were performed in triplicate. Statistical significance 
was examined using a two-tailed Student’s t-test.
Data availability. Sequencing data for 360 breast cancers have been deposited in 
dbGAP (https://www.ncbi.nlm.nih.gov/gap) under accession number phs001250.
v1.p1. All other data are available from the corresponding author upon reasonable 
request.

32.	 Fisher, S. et al. A scalable, fully automated process for construction of sequence-
ready human exome targeted capture libraries. Genome Biol. 12, R1 (2011).

33.	 Gnirke, A. et al. Solution hybrid selection with ultra-long oligonucleotides for 
massively parallel targeted sequencing. Nat. Biotechnol. 27, 182–189 (2009).

34.	 Pugh, T. J., Banerji, S. & Meyerson, M. Pugh et al. reply. Nature 520, E12–E14 
(2015).

35.	 Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–
Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

36.	 Cibulskis, K. et al. ContEst: estimating cross-contamination of human samples 
in next-generation sequencing data. Bioinformatics 27, 2601–2602 (2011).

37.	 Costello, M. et al. Discovery and characterization of artifactual mutations in 
deep coverage targeted capture sequencing data due to oxidative DNA 
damage during sample preparation. Nucleic Acids Res. 41, e67 (2013).

38.	 Ramos, A. H. et al. Oncotator: cancer variant annotation tool. Hum. Mutat. 36, 
E2423–E2429 (2015).

39.	 Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident localization of 
the targets of focal somatic copy-number alteration in human cancers. 
Genome Biol. 12, R41 (2011).

40.	 Landau, D. A. et al. Mutations driving CLL and their evolution in progression 
and relapse. Nature 526, 525–530 (2015).

41.	 Purcell, S. M. et al. A polygenic burden of rare disruptive mutations in 
schizophrenia. Nature 506, 185–190 (2014).

42.	 Price, A. L. et al. Principal components analysis corrects for stratification in 
genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

43.	 Gonzalez-Perez, A. & Lopez-Bigas, N. Functional impact bias reveals cancer 
drivers. Nucleic Acids Res. 40, e169 (2012).

44.	 Lochovsky, L., Zhang, J., Fu, Y., Khurana, E. & Gerstein, M. LARVA: an integrative 
framework for large-scale analysis of recurrent variants in noncoding 
annotations. Nucleic Acids Res. 43, 8123–8134 (2015).

45.	 Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection 
of somatic mutations in normal human skin. Science 348, 880–886 (2015).

46.	 Dees, N. D. et al. MuSiC: identifying mutational significance in cancer genomes. 
Genome Res. 22, 1589–1598 (2012).

47.	 Geyer, C. J. & Meeden, G. D. Fuzzy and randomized confidence intervals and  
P values. Stat. Sci. 20, 358–366 (2005).

48.	 Routledge, R. Practicing safe statistics with the mid-p. Can. J. Stat. 22, 103–110 
(1994).

49.	 Kamburov, A. et al. Comprehensive assessment of cancer missense mutation 
clustering in protein structures. Proc. Natl Acad. Sci. USA 112, E5486–E5495 
(2015).

50.	 Getz, G., Gould, J. & Monti, S. Boosting permutation tests for marker selection. 
Broad Institute publications http://www.broadinstitute.org/mpr/publications/
projects/Computational_Biology/GetzGouldMonti.pdf (2006).

51.	 Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical 
and powerful approach to multiple testing. J. Roy. Stat. Soc. B 57, 289–300 
(1995).

52.	 The ENCODE Project Consortium. An integrated encyclopedia of DNA elements 
in the human genome. Nature 489, 57–74 (2012).

53.	 Matys, V. et al. TRANSFAC: transcriptional regulation, from patterns to profiles. 
Nucleic Acids Res. 31, 374–378 (2003).

54.	 Sandelin, A., Alkema, W., Engström, P., Wasserman, W. W. & Lenhard, B. 
JASPAR: an open-access database for eukaryotic transcription factor binding 
profiles. Nucleic Acids Res. 32, D91–D94 (2004).

55.	 Hallikas, O. et al. Genome-wide prediction of mammalian enhancers based on 
analysis of transcription-factor binding affinity. Cell 124, 47–59 (2006).

56.	 Jolma, A. et al. Multiplexed massively parallel SELEX for characterization of 
human transcription factor binding specificities. Genome Res. 20, 861–873 
(2010).

57.	 Jolma, A. et al. DNA-binding specificities of human transcription factors. Cell 
152, 327–339 (2013).

58.	 Wei, G. H. et al. Genome-wide analysis of ETS-family DNA-binding in vitro and 
in vivo. EMBO J. 29, 2147–2160 (2010).

59.	 Touzet, H. & Varré, J. S. Efficient and accurate P value computation for position 
weight matrices. Algorithms Mol. Biol. 2, 15 (2007).

60.	 The Cancer Genome Atlas Research. Comprehensive, integrative genomic 
analysis of diffuse lower-grade gliomas. N. Engl. J. Med. 372, 2481–2498 
(2015).

61.	 Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 
25, 2078–2079 (2009).

62.	 Cowper-Sal lari, R. et al. Breast cancer risk–associated SNPs modulate the 
affinity of chromatin for FOXA1 and alter gene expression. Nat. Genet. 44, 
1191–1198 (2012).

63.	 Heinz, S. et al. Simple combinations of lineage-determining transcription 
factors prime cis-regulatory elements required for macrophage and B cell 
identities. Mol. Cell 38, 576–589 (2010).

64.	 Fuerer, C. & Nusse, R. Lentiviral vectors to probe and manipulate the Wnt 
signaling pathway. PLoS ONE 5, e9370 (2010).

65.	 Cao, L. et al. Independent binding of the retinoblastoma protein and p107 to 
the transcription factor E2F. Nature 355, 176–179 (1992).

66.	 Hallstrom, T. C. & Nevins, J. R. Specificity in the activation and control of 
transcription factor E2F-dependent apoptosis. Proc. Natl Acad. Sci. USA 100, 
10848–10853 (2003).

67.	 Lazzerini Denchi, E. & Helin, K. E2F1 is crucial for E2F-dependent apoptosis. 
EMBO Rep. 6, 661–668 (2005).

68.	 Dick, F. A. & Dyson, N. pRB contains an E2F1-specific binding domain that 
allows E2F1-induced apoptosis to be regulated separately from other E2F 
activities. Mol. Cell 12, 639–649 (2003).

69.	 Coser, K. R. et al. Antiestrogen-resistant subclones of MCF-7 human breast 
cancer cells are derived from a common monoclonal drug-resistant progenitor. 
Proc. Natl Acad. Sci. USA 106, 14536–14541 (2009).

70.	 Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 
(2011).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

https://www.ncbi.nlm.nih.gov/gap
http://www.broadinstitute.org/mpr/publications/projects/Computational_Biology/GetzGouldMonti.pdf
http://www.broadinstitute.org/mpr/publications/projects/Computational_Biology/GetzGouldMonti.pdf


Article RESEARCH

Extended Data Figure 1 | Patient cohort characteristics. a, Comprehensive overview of coding and non-coding mutations in 360 breast cancer  
samples assayed on the ExomePlus platform. Samples are ordered on the basis of the promoter mutation events, then by known breast cancer coding 
drivers. b, Copy number profiles for 360 breast cancers.
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Extended Data Figure 2 | Targeted validation of promoter mutations. 
a, Targeted sequencing validation of selected promoter mutations in 
47 patients from the ExomePlus cohort with Illumina TruSeq Custom 
Amplicon panel (TSCA)-targeted sequencing technology. b, Validation 
rate of promoter mutations calculated as validated mutations over all 
sequenced and powered mutations. c, Median detection sensitivity at 
mutated sites for significantly mutated promoters. Each point indicates a 

single mutated position. d, PCR-MiSeq for the FOXA1 promoter locus for 
126 patients with sufficient coverage for mutation calling from the original 
ExomePlus cohort. Three out of four mutations validated in experiment 
(green and red bars). PCR-MiSeq for 140 patients included but not covered 
in original ExomePlus experiment and 64 additional tumours yielded 
three novel mutations in each set (light and dark blue bars). No germline 
mutations at this site were detected in normal samples.
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Extended Data Figure 3 | Bi-allelic hits for TBC1D12 and LEPROTL1 
promoter mutations. a, Sequencing read alignment for tumour BDD-162  
shows location of TBC1D12 hotspot mutations on mutually exclusive alleles.  
b, Location of hotspot mutations near the LEPROTL1 transcription start 
on mutually exclusive sequencing reads in patient BDD-MEX-BR-116. 

Reference bases are indicated in grey, mismatched bases in their respective 
colours (A, green; C, blue; G, orange; T, red). Hotspot mutation sites 
are outlined with black boxes. Images generated with the Integrative 
Genomics Viewer70.
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Extended Data Figure 4 | Characterization of TBC1D12 mutations.  
a, TBC1D12 hotspot mutations are present in patients from TCGA (exome 
sequencing; numbers in parentheses indicate total number of patients). 
b, Exome hybrid capture alignment confirms mutual exclusivity of 
TBC1D12 mutations in a patient with bladder cancer (TCGA-C4-ACF1). 
Image generated with the Integrative Genomics Viewer70. c, TBC1D12 
genomic locus (hg19) depicting location of promoter region and overlap 
with MCF-7 breast cancer cell line DNase signal. Red bar indicates 
native promoter region and TBC1D12 5′​ UTR included in the promoter 
mutation reporter assay construct. Zoomed-in region shows two upstream 

putative alternative translation start sites (methionine, highlighted 
in green) potentially giving rise to larger luciferase protein products. 
Multiple sequence alignment of amino-acid sequence in primates 
illustrates evolutionary conservation of upstream translation start sites 
and downstream protein sequence in most species. Image generated with 
the Integrative Genomics Viewer70. d, Western blot of luciferase expressed 
from TBC1D12 and control reporter assay construct. Note that luciferase 
expressed from TBC1D12 construct is approximately 80 kDa larger than 
the control.
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Extended Data Figure 5 | Luciferase reporter assay and EMSA 
for additional promoter mutations. a, EMSA shows gel shift for 
FOXA1 WT (lanes 1 and 2) and mutant (lanes 5 and 6) probes 
when incubated with HEK293T nuclear cell extract. WT FOXA1 
competitor competes off protein from WT probes in a concentration-
dependent manner (1 and 5 molar excess), but fails to do so for the 
mutant FOXA1 probe. Luciferase reporter assay and EMSA for WT 
and mutated probes in ZNF143 (b), LEPROTL1 (c), ALDOA (d), and 
TBC1D12 (e) show significantly decreased expression activity and a 
trend for loss of binding in promoter mutants (except for TBC1D12, 
where there is no binding). Individual data points in reporter assays 
(black) overlap summary statistic boxplots (grey) with median 
indicated by black horizontal line. P values calculated with two-
sided Student’s t-test. Lanes 1 and 4 in each EMSA show biotinylated 
probes only. Lanes 2 and 5 show that addition of HEK293T nuclear 
extract induces a mobility shift of the biotinylated WT and mutant 
probes, indicating protein binding to the probe. Gel shift is prevented 
by the addition of excess matched unlabelled probes (lanes 3 and 6).  
No binding occurs for either WT or mutant probes in the TBC1D12 
promoter (e), suggesting that these mutations do not affect 
transcriptional regulation from DNA.
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Extended Data Figure 6 | Increased binding of E2F/DP1 to the mutant 
FOXA1 promoter. a, Immunoblot for haemagglutinin (HA)-tagged E2F3 
and DP1 shows binding of both proteins in HEK293T cells transfected 
with either WT or mutant FOXA1 promoter luciferase construct. 
Immunoblot against tubulin serves as loading control. b, EMSA for 
HEK239T cells transfected with E2F3/DP1 expression constructs. EMSA 

was then performed for FOXA1 WT (lanes 1–3) and mutant (lanes 4–6) 
promoter probes. Ectopic expression of E2F3/DP1 increases nuclear 
protein binding signal to the mutant promoter compared with WT 
(compare lane 6 with lane 3), suggesting that increase in binding observed 
in mutant over WT is at least in part because of increased recruitment of 
the E2F/DP1 complex.
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Extended Data Figure 7 | IGR analysis. a, Motif instances overlapping open chromatin in MCF-7 cells were considered for analysis (example of 
FOXA1 is shown). b, E2F1 average ChIP-seq signal from MCF-7 cells at WT, mutant, and control scramble motif locations measured in a 400 bp region 
surrounding motifs. Grey lines, 95% confidence interval.
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Extended Data Figure 8 | Stable overexpression of FOXA1 in MCF-7 
cells. MCF-7 cells stably transfected with FOXA1 show strong FOXA1 
overexpression compared with MCF-7 cells transfected with empty vector.
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Extended Data Figure 9 | Discovery power in TCGA data set. Discovery 
power of TCGA breast cancer whole genomes (100 patients) with median 
detection sensitivity of 93%. Black vertical line indicates power values for 
100 patients. Horizontal red line demarcates 90% power.
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Extended Data Figure 10 | Lack of association between promoter 
mutation rate in ExomePlus cohort and covariates shown to correlate 
with mutation rate in coding genes. Each bin represents a covariate 

quintile, and mutation rates are aggregates over all promoters in each bin. 
Error bars, s.d. of 1,000 bootstrap simulations. H3K4me1 signal from 
ENCODE breast luminal epithelial cells.
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