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IMPORTANCE Outcomes for patients with pancreatic ductal adenocarcinoma (PDAC) remain
poor. Advances in next-generation sequencing provide a route to therapeutic approaches,
and integrating DNA and RNA analysis with clinicopathologic data may be a crucial step
toward personalized treatment strategies for this disease.

OBJECTIVE To classify PDAC according to distinct mutational processes, and explore their
clinical significance.

DESIGN, SETTING, AND PARTICIPANTS We performed a retrospective cohort study of resected
PDAC, using cases collected between 2008 and 2015 as part of the International Cancer
Genome Consortium. The discovery cohort comprised 160 PDAC cases from 154 patients
(148 primary; 12 metastases) that underwent tumor enrichment prior to whole-genome and
RNA sequencing. The replication cohort comprised 95 primary PDAC cases that underwent
whole-genome sequencing and expression microarray on bulk biospecimens.

MAIN OUTCOMES AND MEASURES Somatic mutations accumulate from sequence-specific
processes creating signatures detectable by DNA sequencing. Using nonnegative matrix
factorization, we measured the contribution of each signature to carcinogenesis, and used
hierarchical clustering to subtype each cohort. We examined expression of antitumor
immunity genes across subtypes to uncover biomarkers predictive of response to systemic
therapies.

RESULTS The discovery cohort was 53% male (n = 79) and had a median age of 67

(interquartile range, 58-74) years. The replication cohort was 50% male (n = 48) and had a

median age of 68 (interquartile range, 60-75) years. Five predominant mutational subtypes

were identified that clustered PDAC into 4 major subtypes: age related, double-strand break

repair, mismatch repair, and 1 with unknown etiology (signature 8). These were replicated

and validated. Signatures were faithfully propagated from primaries to matched metastases,

implying their stability during carcinogenesis. Twelve of 27 (45%) double-strand break repair

cases lacked germline or somatic events in canonical homologous recombination

genes—BRCAT, BRCA2, or PALB2. Double-strand break repair and mismatch repair subtypes

were associated with increased expression of antitumor immunity, including activation of

CD8-positive T lymphocytes (GZMA and PRFT) and overexpression of regulatory molecules

(cytotoxic T-lymphocyte antigen 4, programmed cell death 1, and indolamine Author Affiliations: Author
2,3-dioxygenase 1), corresponding to higher frequency of somatic mutations and affiliations arelisted at the end of this

article.
tumor-specific neoantigens. "
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ancreatic ductal adenocarcinoma (PDAC) has the

lowest 5-year overall survival (OS) of any epithelial

carcinoma.! Randomized clinical trials>* of adjuvant*
and palliative>® cytotoxic chemotherapies show modest end
point improvements with considerable attendant toxicities.
Targeted agents investigated without biomarker selection,
including evofosfamide, programmed cell death 1 ligand
(PD-L1),” cytotoxic T-lymphocyte antigen 4 (CTLA-4),® and
human epiadermal growth factor receptor 2° inhibitors,
have not improved OS, except for marginal benefit from
erlotinib hydrochloride.'®'? Qutcomes for patients with
PDAC will improve with rational molecular subtyping and
ensuing directed therapies, as with breast'® and lung'* carci-
nomas. The PDAC exome'>” contains 4 driver genes, KRAS,
TP53, CDKN2A, and SMAD4, and few disturbed pathways
that are not translatable into predictive subtypes. Stratifica-
tion by somatic events, including MYC amplification
and specific KRAS mutant codons,!” is not consistently
prognostic. Structural variation in 100 genomes'® identified
4 PDAC subtypes, with 1 predictive of platinum chemo-
therapy response, but progression-free survival and OS
were not assessed. Finally, prognostic transcription-based
subtypes have been described!® and refined,?°-?! but with
neither relation to genomic features nor therapeutic impli-
cations.

Cancer genomes accumulate mutations over cell cycles
from DNA damage and repair. Analyses of these processes,?%+23
informative in other tumors,?2° have not been comprehen-
sively reported in PDAC. Signatures representative of each
process?? can be quantified per tumor, and the population of
tumors subtyped?® by their relative contributions. Genomic and
transcriptomic landscapes of antitumor immunity have been
systemically explored in other tumor types®* and predict re-
sponse to immunotherapies?®27; however, the character of
immune infiltration and its association with mutational sig-
natures has not been studied in PDAC.

We integrated genome, transcriptome, and clinico-
pathologic data from 2 independent data sets to define 4
major signature-based PDAC subtypes. These aligned with
known hereditary pancreas cancer predisposition syn-
dromes (HPCSs),?® were propagated from primary tumors to
paired metastases, and differentially expressed antitumor
immune markers.

Methods

All studies were approved by local research ethics boards or
institutional review boards and written informed consent was
obtained for all donors. Whole-genome sequencing (WGS) vari-
ant calls, RNA sequencing and microarray expression values,
and clinical information and metadata for discovery and rep-
lication cohorts are available from the International Cancer
Genome Consortium (ICGC) data portal.?° Discovery cohort
samples underwent tumor enrichment prior to sequencing. All
reads were processed through the same data workflows. Bio-
informatics tool names and versions are provided in the
eMethods in Supplement 1.
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Key Points

Question Can mutational signatures be used for developing
translationally relevant personalized treatment in patients with
pancreas cancer?

Findings Using a discovery/validation cohort study of resected
pancreas cancer cases from the International Cancer Genome
Consortium, distinct somatic mutational signatures in genomic
DNA and RNA were identified. Mechanisms of both germline and
somatic genomic instability, characteristic of DNA mismatch repair
and double-stranded break repair, were found in approximately
12% of cases and were associated with transcriptional and
immunohistochemical hallmarks of antitumor immune activation.

Meaning Mutational signatures may guide biomarker
development and application of personalized chemo/
immunotherapeutic approaches for a subset of patients with
pancreas cancer.

. |
Results

Mutational Signatures Define Four Principal PDAC Subtypes
Our discovery cohort consisted of 148 primary PDACs and 12
metastases from 154 patients who underwent WGS (Figure 1A
and eTable 1in Supplement 1). For replication, 95 whole PDAC
genomes from 95 patients were obtained from the ICGC
(eFigure 1 and eTable 1in Supplement 1).

Weidentified 11 mutational signatures in our discovery and
12 in our replication genomes using the approach of Alexan-
drov et al,*° which were merged by shared etiologies into 7 sig-
natures per cohort. Hierarchical clustering by the proportion
of single-nucleotide variants (SNVs) attributable to each sig-
nature (eFigure 2A and B in Supplement 1) in each cohort in-
dependently confirmed 4 major subtypes: (1) an age-related
group dominated by signatures 1 and 5, attributed to clock-
like mutational processes accumulated over cell divisions};
(2) a double-strand break repair (DSBR) group characterized
by signature 3, attributed to deficiencies in homologous re-
combination repair (HRR) of double-strand breaks; (3) a
mismatch repair (MMR) group characterized by signatures 6,
20, and 26, attributed to defectsin DNA MMR; and (4) a group
characterized by signature 8, of unknown etiology (Figure 1A
and eFigure 1in Supplement 1). There were 2 minor groups in
both cohorts, 1 dominated by signature 17, another by APO-
BEC. Tumor cellularity and coverage were consistent
between subtypes (eFigure 3 in Supplement 1). Subtype preva-
lence was equivalent between cohorts (P = .08, x?).

We verified that signatures associated with their attrib-
uted etiologies. The number of SNVs in signatures 1 and 5
correlated with patient age at diagnosis across all cases (r for
discovery = 0.21, P for discovery = .008; r for replica-
tion = 0.23, Pforreplication = .03; Pearson correlation), while
total SNVs did not (eFigure 4 in Supplement 1).

Tumors dysfunctional in HRR rely on nonconservative
forms of DSBR, namely, single-strand annealing, which cre-
ates large structural deletions,*?>*> and nonhomologous end
joining and microhomology-mediated end joining, which cre-
ate short deletions (3-20 base pairs [bp] in length). Consistent
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Figure 1. Mutational Signatures in Primary and Metastatic Pancreatic Ductal Adenocarcinoma
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A, Bar plot of proportion of 7 merged signatures in each of the 160 discovery
tumors, sorted by hierarchical clustering (dendogram at bottom), showing
germline (dark blue), somatic (mauve), and occult (white) double-strand break
repair (DSBR) etiologies and heat maps for total number of single-nucleotide
variants (SNVs), total number of neoantigens, total number of indels, total
number of short deletions (dels) greater than 3 base pairs (bp), total number of

structural deletions, and transcriptional subtypes (Moffitt tumor class, Collisson
class, and Bailey class) in cases for which RNA sequencing is available for the
tumor. B, Bar plots of proportion of 7 merged signatures in paired primary
tumors and metastases from 4 cases. ADEX indicates aberrantly differentiated
endocrine exocrine.

with this, DSBR cases had greater numbers of both large
structural and short deletions greater than 3 bp relative to
age-related cases (P for discovery < .001 for each; P for repli-
cation < .001; Wilcoxon) (Figure 1A and eFigure 5 in
Supplement 1).
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The MMR cases had dramatically more SNVs than the
age-related cases (P for discovery < .001; Wilcoxon)
(Figure 1A). Mismatch repair deficiency was verified by
immunohistochemical analysis and a polymerase chain
reaction (PCR)-based assay (eTable 2 in Supplement 1). Of
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the 4 MMR cases, 3 had germline and 1 had only somatic
mutations in MMR genes (eTable 3 in Supplement 1). Pub-
lished frequencies of MMR deficiency in PDAC vary
widely.'”>* Absence of MMR from the replication cohort is
likely due to its smaller size. To validate MMR prevalence,
we stained a tumor microarray of 370 PDACs from the Euro-
pean Society Group for Pancreatic Cancer (ESPAC)*>” for 4
MMR proteins. Of 342 successfully stained, 6 were immuno-
deficient. Assuming discovery, replication, and ESPAC
cohorts to be unbiased samplings of 1 population, we infer
MMR deficiency prevalence in PDAC to be 1.7% (95% CI,
0.65%-2.7%), nearly equal to that of Lynch syndrome in
PDAC3® (eTable 4 in Supplement 1). Somatic MMR defi-
ciency thus contributes little to PDAC, unlike colorectal®®
and endometrial*® cancers.

The discovery cohort included 12 metastases: 10 age re-
lated, 1 DSBR, and 1 MMR. Five of these were matched with 3
primaries and showed faithful propagation of signatures
(Figure 1B), including a DSBR pair with a germline PALB2 mu-
tation. This implies that mutational processes are estab-
lished early in carcinogenesis and is important for trials in
which PDAC metastases are more safely biopsied. Paired pri-
maries and metastases were obtained at autopsy from pa-
tients who received palliative chemotherapy (eTable 5 in
Supplement 1).

Tiers of DSBR Deficiency

Clinical interest in HRR deficiency is increasing, with tai-
lored treatment strategies for breast*! and ovarian*? cancer.
Of 17 discovery DSBR cases, 11 are explained by biallelic
inactivation of BRCA1, BRCA2, or PALB2. Nine had patho-
genic germline mutations with somatic inactivations of the
second allele, and 2 had biallelic somatic inactivations
(eTable 6 in Supplement 1). The remaining 6 were occult,
lacking germline or somatic inactivation of canonical HRR
genes, referred to as “BRCAness” in the literature.?® In the
replication cohort, DSBR etiology was similar, with 2 germ-
line, 2 somatic, and 6 BRCAness. We inferred DSBR preva-
lence in PDAC to be 10.8% (95% CI, 7.0%-14.7%), comprising
4.4% (95% CI, 1.9%-7.0%) germline deficiency, 1.6% (95%
CI, 0.04%-3.2%) somatic, and 4.8% (95% CI, 2.2%-7.5%)
BRCAness. This germline frequency is nearly equal to the
prevalence of germline BRCAI or BRCA2 deficiency in
PDAC,*% implying that PALB2 contributes minimally to
PDAC predisposition.

In the amalgamated discovery and replication DSBR cases,
the proportion of SNVs attributed to signature 3 was greater
in germline than somatic cases, with BRCAness cases inter-
mediate (Figure 2). The number of SNVs attributed to a
mutational process likely increases with its duration in
tumorigenesis.3° Thus, germline cases may become HRR de-
ficient earlier, while somatic cases become deficient later or
subclonally, with BRCAness an admixture of both etiologies.
This may have implications for therapies targeting HRR defi-
ciency. BRCAness cases also have relatively low numbers of
structural variants (SVs) (Figure 2) and may alternatively
harbor a mutational process distinct from classical HRR
deficiency.
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Assuming that 1 or a few genes with “2 hits” explain the
12 BRCAness cases, we agnostically compared frequencies of
biallelic inactivation of genes in the DSBR and age-related tu-
mors of our amalgamated cohorts (Figure 3). We considered
only primary tumors because metastasis-specific events were
reported in PDAC.** BRCA2 was the only gene preferentially
inactivated in the DSBR group (false discovery rate, 0.004%).

The idiopathic signature 8 is similar to signature 3, with
the additional feature of strand bias for C>A substitutions. The
latter was reported in PDAC exomes'” and attributed to smok-
ing, a PDAC risk factor,* although our data do not support this
epidemiologic association (eFigure 6 in Supplement 1). Signa-
ture 8 is also found in breast cancer,?%*® suggested as due either
to past activity of transcription-coupled nucleotide excision
repair or to HRR deficiency. Comparison of frequencies of bi-
allelic inactivation per gene in signature 8 with either DSBR
or age-related primary cases revealed no associations (eFig-
ure 7A and B in Supplement 1). One signature 8 case bore a
germline missense mutation (rs141465583) of uncertain sig-
nificance in BRCAI with somatic loss of the wild-type allele.
This variant is unlikely to impair HRR because overexpres-
sion of green fluorescent protein (GFP)-fused BRCAI p.P977L
restored the ability of RAD5I to form ionizing radiation-
induced foci in U20S Flp-In cells depleted of endogenous
BRCAI to a similar extent as wild-type GFP-BRCAI (eFigure 8
in Supplement 1). Thus, occult drivers of BRCAness and sig-
nature 8 either were so heterogeneous that each affected few
cases or were not assayed—for example, noncoding or epigen-
etic changes or haploinsufficiency of an HRR-pathway gene or
exogenous carcinogens.

Mutational Signatures Are Linked

to Predisposition Syndromes

Truncating germline mutations of HPCS genes were found in
16 cases in our discovery cohort, including BRCA1, BRCA2, and
PALB2 mutations in 10, MSH2 and MSH6 in 3, ATM in 2, and
CDKNZ2A in 1. There were 7 HPCS carriers in the replication co-
hort, including 4 BRCA2,1PALB2,1ATM, and 1 PMS2 (eTable
7in Supplement 1). Age at diagnosis differed in discovery but
not replication donors with vs without HPCS (P for discov-
ery = .002, P for replication = .32, t test) (eFigure 9 in
Supplement 1).

Most patients with HPCS developed tumors driven by pro-
cesses linked to their predispositions, demonstrating the im-
portance of recognizing HPCS, including genetic counseling and
germline testing. A minority developed tumors with pro-
cesses unrelated to their predisposition. The somatic MMR dis-
covery case had a germline BRCA2 frameshift. Another dis-
covery donor had a germline MSH6 frameshift, but a tumor that
was microsatellite stable and strongly positive for signature 17,
of unknown etiology. One replication case had a germline stop-
gain in PMS2 (not long-range PCR verified) that was microsat-
ellite stable, and 2 cases had germline BRCA2 truncations
without somatic “second hits” that lacked signature 3. The lat-
ter agrees with a mouse model heterozygous for BRCA2 that
retained the second, functional allele in PDAC and was not sen-
sitive to mitomycin C and PARPI (poly [ADP-ribose] poly-
merase 1) inhibitors.*”
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Figure 2. Etiologic Stratification of Double-Strand Break Repair Genomes
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genome.

Nine discovery and 7 replication cases had biallelic events
in ATM. Only 1bore signature 3, the replication germline ATM
carrier who lacked inactivation of another canonical HRR gene
(eFigure 10 in Supplement 1).

Integration of Mutational Signatures With Gene Expression
We performed RNA sequencing on 76 discovery tumors. Our
replication cohort had array expression data for 91 cases. We
classified these by the methodologies of Collisson et al,'®
Moffitt et al,?° and Bailey et al.?! As with other cancers,
including melanoma?# and colorectal cancer,*® mutational
and transcriptional subtypes did not overlap (eFigure 11 in
Supplement 1). Survival analyses had a nonsignificant find-
ing of worse prognosis in the Moffitt basal subtype (eFigure
12 in Supplement 1).

We used gene sets?® representative of 16 categories of im-
mune function to characterize local immune activity. Adap-
tive immunity and co-inhibition genes were more highly ex-
pressed in DSBR and MMR cases (Figure 4A and eFigure 13A
in Supplement 1). Cytolytic activity of infiltrating CD8-
positive T lymphocytes, measured by the geometric mean of
GZMA and PRF1 expression, and co-regulatory molecules,
namely, CTLA-4, PD-L1, PD-L2, and indolamine 2,3-
dioxygenase 1 (IDO-1), were increased in DSBR and MMR rela-
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tive to age-related cases (eFigure 14 in Supplement 1), remi-
niscent of expression patterns in melanoma responsive to
checkpoint blockade.2® Clustering of cases by differential ex-
pression of the genes in these sets?® identified most DSBR
(discovery, 6 of 6 DSBR; replication, 5 of 8) and all MMR
cases as “immunogenic” (eFigures 15 and 16 in Supplement 1).
The DSBR primary and metastasis pair both had high cyto-
lytic activity, implying that antitumor responses are driven
intrinsically.

To relate signatures to elevated cytolytic activity, we
enumerated tumor neoantigens in discovery and replication
cases. These paralleled SNV counts (r for discovery = 0.98, P
for discovery < .001; r for replication = 0.85, P for replica-
tion < .001; Pearson) (Figure 4B and eFigure 13B in Supplement
1) and were elevated in DSBR and MMR cases (P for discov-
ery < .001; P for replication < .001; DSBR vs age related; Wil-
coxon) (eFigure 17 in Supplement 1). The number of neoanti-
gens per SNV did not differ by subtype, implying that no
signature was inherently immunogenic. Neither neoantigen
nor SNV counts were associated with OS (eFigure 18 in
Supplement 1). We found no other drivers of antitumor
immunity, including incorporation of exogenous viruses or
expression of endogenous retroviruses or of cancer testes
antigens.
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Equal frequencies of biallelic mutations in genes in the
DSBR and age-related cases (Figure 3) imply that neither tu-
mor suppressor, nor HLA class 1, nor extrinsic apoptosis gene
inactivation is an immune resistance strategy in PDAC.

Cytolytic activity and CD8A and PD-L1 expression
strongly correlated with CD8 and PD-L1 immunohistochem-

Figure 3. Association of Genetic Inactivations With Double-Strand Break
Repair (DSBR) Signature
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istry on a tumor microarray of 33 separate PDAC cases, vali-
dating our RNA sequencing results (Figure 5). Histologic
analysis from 81 discovery cases showed no difference in
the degree of peritumoral and intratumoral inflammation
across signature classes, implying that microscopy alone
cannot accurately measure local antitumor immunity (eFig-
ure 19 in Supplement 1).

Prognostic and Predictive Value of Mutational Signatures
Signature groups were neither prognostic nor associated with
tumor grade and stage (eFigures 20 and 21 in Supplement 1).
Favorable outcomes are anecdotally reported for MMR-
deficient PDAC.#°->! The 4 discovery MMR patients had me-
dian OS of 1281 (interquartile range [IQR], 1248-1457) days com-
pared with 461 (IQR, 254-1165) days for age-related cases. The
patient with the stage IV MMR tumor is alive 24 months from
diagnosis, responding to immunotherapy. In contrast, the 6
MMR immunodeficient ESPAC cases had worse survival than
immunointact cases (P = .03, log-rank test) (eFigure 22 in
Supplement 1). Rarity of MMR deficiency precludes defini-
tive conclusions.

Roughly 1in 10 cases in both cohorts have the DSBR sig-
nature. As HRR-deficient PDAC,!® breast,*? and ovarian*!
cancers may be sensitive to platinum-based therapy,
we compared outcomes in 18 cases treated with either cis-
platin or oxaliplatin (eTable 8 in Supplement 1 and eWork-
sheet in Supplement 2). In the palliative setting, median
progression-free survival was not significantly longer in
DSBR than in age-related cases (253 [IQR, 148.5-452] vs 108
[IQR, 82-194] days) (eFigure 23 in Supplement 1). Platinum
responders were observed in both groups, suggesting that
platinum-based therapy may also benefit non-DSBR cases.

Figure 4. Integrated Genomic and Transcriptomic Features of Antitumor Immunity in Pancreatic Ductal Adenocarcinoma
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A, Heat map of median expression of gene sets representative of categories of
immune function by signature group for discovery cohort cases with tumor
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gray. APC indicates antigen-presenting cell; DSBR, double-strand break repair;
MHC, major histocompatibility complex; MMR, mismatch repair;

pDC, plasmacytoid dendritic cell.
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Figure 5. Correlation of Immunohistochemistry With RNA Sequencing
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A, Programmed cell death 1ligand (PD-L1) and CD8 immunohistochemical (IHC)
expression in representative cancer tissue microarray spots showing high and
low expression of PD-L1and CD8 counts. B, Median (dotted lines) and
interquartile ranges (shaded regions) of expression of PD-L1, CD8A, and
cytolytic activity (left-hand y axis) and absolute counts of cells with IHC staining
for CD8 (right-hand y axis) at each level of PD-L11HC staining (0-3) (see

Methods). CD8 staining cell counts and CD8A expression were strongly
correlated (P < .001, r = 0.744, Pearson correlation). Programmed cell death 1
ligand and cytolytic activity expression were significantly higher across PD-L1
staining levels (P for PD-L1 = .006, P for cytolytic activity = .01, PD-L10-1vs 2-3
staining, Wilcoxon test). FPKM indicates fragments per kilobase of exon per
million fragments mapped.

Sample size limitations preclude determining whether sus-
ceptibility varies with proportion of DSBR.

|
Discussion

Mutational signatures in WGS defined 4 major PDAC classes,
namely age related, DSBR, MMR, and signature 8. These were
verified, replicated in independent cohorts, associated with
predisposition syndromes, and propagated from primary to
metastatic lesions. Cases of PDAC bearing DSBR and MMR
signatures have elevated local antitumor immunity, driven by
high levels of tumor neoantigens and evaded by expression of
regulatory genes. This has implications for personalized man-
agement of PDAC.

Approximately 10% of PDAC is categorized as DSBR.
Slightly more than half of these have biallelic inactivation of
HRR genes; the rest are occult. The latter have lower num-
bers of large and small deletions greater than 3 bp relative to
DSBR cases with known causal variants. These BRCAness tu-
mors may have milder HRR deficiency or may represent a novel
process that generates DSBR-like nucleotide substitutions but
is distinct from classical HRR deficiency at the SV level. We
might not expect platinum- or PARP inhibitor-based thera-
pies directed at HRR deficiencies to be as effective in the BRCA-
ness group, nor perhaps in the somatic DSBR cases that have
a lower proportion of signature 3 attributed SNVs. Similarly,
ovarian cancers with BRCAI promoter hypermethylation are
less sensitive to chemotherapy than those with BRCAI
mutations,>?>3 despite both being HRR deficient. This may ex-
plain why exceptional responses to platinum-based chemo-

jamaoncology.com

therapy are not seen in 10% of patients with PDAC in clinical
trials. Our failure to retrospectively detect significant improve-
ment in progression-free survival in a palliative setting in DSBR

cases is also consistent with heterogeneous mechanisms of

HRR deficiency and secondary platinum resistance. Biomarker-
driven prospective trials of PARP inhibitors®* and platinum-
based therapies should clarify this controversy.

Although BRCAness genomes do not appear to be driven
by 1or a few genes, multiple lines of evidence support the dis-
tinction of these cases. At the nucleotide level, the analogous
mutational processes acting in germline, somatic, and occult
DSBR cases giverise to tumor-specific neoantigens that in turn
drive antitumor cytolytic activity, a prerequisite to success-
ful immunotherapy.?® A recent study found that metastatic
melanomas responding to anti-programmed cell death 1 (PD-1)
therapy are enriched for mutations in BRCA2.%° The rate of neo-
antigen formation per SNV was equal across signature types,
implying that increased mutation rate alone may predict check-
point inhibitor response, as shown in colorectal cancer,?” and
platinum-based chemotherapy response, as shown in ovar-
ian cancer.>® While it has been hypothesized that sequestra-
tion protects PDAC cells from adaptive immunity,>”->° our data
suggest that resistance occurs through increased expression
of PD-1, CTLA-4, and IDO-1. The potential for immuno-
therapy in PDAC has recently been demonstrated in a mouse
model that recapitulates its fibrotic stroma using T cells engi-
neered to recognize PDAC-specific antigen.®© The progres-
sive dysfunction of these T cells in vivo is compatible with our
RNA expression findings, implying a role for immune check-
point inhibition. Also, high expression of IDO-1in both DSBR
and MMR cases argues for trials of IDO-1 inhibitors in PDAC,
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as in other cancers.®%2 Current limited success of immuno-
therapy in PDAC”® may be because only a minority of cases
have significant local antitumor activity. Nonetheless, our
data do not prove responsiveness to immunotherapies in sub-
types of PDAC. Other important factors, such as host immu-
nocompetence and tumor microenvironment, must be better
understood to facilitate use of immunotherapeutics in clini-
cal settings.

The nature of our complementary DNA-based RNA
capture did not allow assessment of expression of all endog-
enous retroviruses or cancer testes antigens, nor quantifica-
tion of tumor cellularity from RNA sequencing. Tumor cellu-
larity estimates of the same fresh tissue from sections used for
WGS were not significantly different between subtypes
(eFigure 3 in Supplement 1). Our outcome analyses are lim-
ited by the retrospective nature of this work, including non-
randomized patient treatment selection and possible con-
founding factors not balanced between subtypes. Also,
biallelic inactivation of other genes important to both DNA
damage response and PDAC predisposition, such as ATM,®*
was not associated with signatures, implying that either our

Mutations and Immune Activity in Pancreatic Ductal Adenocarcinoma

whole genome sample size was too small to detect all muta-
tional processes or that the contributions of mutations pro-
duced by some processes were too few to be detected.>°
Nonetheless, that genomic and transcriptomic data gener-
ated separately with different platforms agree in all aspects
validates our findings.

.|
Conclusions

Our and other sequencing efforts have focused on resect-
able PDAC, constituting one-fifth of cases. Improving out-
comes for the majority of patients with metastatic disease is
needed. Our analysis provides a framework for integrating
genomics and transcriptomics to suggest translatable differ-
ences between tumor subtypes. We are now applying this to
whole-genome and transcriptome sequences from tumor
biopsies to understand resistance to conventional treatment
and to select second-line strategies for patients with
advanced disease within the context of a prospective clini-
cal trial (NCT02750657).
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